Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A quasi-invariance theorem for measures on Banach spaces

Author: Denis Bell
Journal: Trans. Amer. Math. Soc. 290 (1985), 851-855
MSC: Primary 46G12; Secondary 28C20
MathSciNet review: 792833
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for a measure $ \gamma $ on a Banach space directional differentiability implies quasi-translation invariance. This result is shown to imply the Cameron-Martin theorem. A second application is given in which $ \gamma $ is the image of a Gaussian measure under a suitably regular map.

References [Enhancements On Off] (What's this?)

  • [1] K. D. Elworthy, Gaussian measures on Banach spaces and manifolds, Global analysis and its applications (Lectures, Internat. Sem. Course, Internat. Centre Theoret. Phys., Trieste, 1972) Internat. Atomic Energy Agency, Vienna, 1974, pp. 151–166. MR 0464297
  • [2] Leonard Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 31–42. MR 0212152
  • [3] Leonard Gross, Potential theory on Hilbert space, J. Functional Analysis 1 (1967), 123–181. MR 0227747
  • [4] Paul Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976) Wiley, New York-Chichester-Brisbane, 1978, pp. 195–263. MR 536013
  • [5] A. V. Skorohod, Integration in Hilbert space, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by Kenneth Wickwire; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79. MR 0466482

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46G12, 28C20

Retrieve articles in all journals with MSC: 46G12, 28C20

Additional Information

Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society