Connected simple systems and the Conley index of isolated invariant sets

Author:
Dietmar Salamon

Journal:
Trans. Amer. Math. Soc. **291** (1985), 1-41

MSC:
Primary 58F25; Secondary 34C35

DOI:
https://doi.org/10.1090/S0002-9947-1985-0797044-3

MathSciNet review:
797044

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The object of this paper is to present new and simplified proofs for most of the basic results in the index theory for flows. Simple, explicit formulae are derived for the maps which play a central role in the theory. The presentation is self-contained.

**[1]**N. P. Bhatia and G. P. Szegö,*Stability theory of dynamical systems*, Springer, Berlin, 1970. MR**0289890 (44:7077)****[2]**G. D. Birkhoff,*Dynamical systems*, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1927. MR**0209095 (35:1)****[3]**C. C. Conley,*Isolated invariant sets and the Morse index*, CBMS Regional Conf. Ser. in Math., no. 38, Amer. Math. Soc., Providence, R. I., 1976. MR**511133 (80c:58009)****[4]**C. C. Conley and R. Zehnder,*Morse type index theory for flows and periodic solutions for Hamiltonian systems*, Mathematics Research Center, University of Wisconsin-Madison, TSR #2567, 1983; Comm. Pure Appl. Math.**37**(1984).**[5]**R. Franzosa,*Index filtrations and connection matrices for partially ordered Morse decompositions*, Ph. D. Thesis, University of Wisconsin-Madison, 1984.**[6]**H. L. Kurland,*The Morse index of an isolated invariant set is a connected simple system*, J. Differential Equations**42**(1981), 234-259. MR**641650 (83a:58077)****[7]**-,*Homotopy invariants of repeller-attractor pairs*. I.*The Púppe sequence of an*-*pair*, J. Differential Equations**46**(1982), 1-31. MR**677580 (84d:58049)****[8]**-,*Homotopy invariants of repeller-attractor pairs*. II.*Continuation of an*-*pair*, J. Differential Equations**49**(1983), 281-329. MR**708647 (85i:58095)****[9]**J. T. Montgomery,*Cohomology of isolated invariant sets under perturbation*, J. Differential Equations**13**(1973), 257-299. MR**0334173 (48:12492)****[10]**K. P. Rybakowski and E. Zehnder,*A Morse equation in Conley's index theory for semiflows on metric spaces*, Institut fur Mathematik, Ruhr Universität Bochum, 1982.**[11]**J. A. Smoller,*Shock waves and reaction diffusion equations*, Springer-Verlag, New York, 1983. MR**688146 (84d:35002)****[12]**E. H. Spanier,*Algebraic topology*, Springer-Verlag, New York, 1966. MR**666554 (83i:55001)****[13]**G. W. Whitehead,*Elements of homotopy theory*, Springer-Verlag, New York, 1978. MR**516508 (80b:55001)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F25,
34C35

Retrieve articles in all journals with MSC: 58F25, 34C35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1985-0797044-3

Keywords:
Flows,
isolated invariant sets,
index theory,
attractor-repeller pairs,
connection map,
continuation

Article copyright:
© Copyright 1985
American Mathematical Society