Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Propagation estimates for Schrödinger-type operators

Author: Arne Jensen
Journal: Trans. Amer. Math. Soc. 291 (1985), 129-144
MSC: Primary 35P99; Secondary 81E13, 81F05
MathSciNet review: 797050
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Propagation estimates for a Schrödinger-type operator are obtained using multiple commutator techniques. A new method is given for obtaining estimates for powers of the resolvent. As an application, micro-local propagation estimates are obtained for two-body Schrödinger operators with smooth long-range potentials.

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, Some new results in spectral and scattering theory of differential operators on 𝑅ⁿ, Séminaire Goulaouic-Schwartz (1978/1979), École Polytech., Palaiseau, 1979, pp. Exp. No. 2, 11. MR 557513 (81j:35091)
  • [2] M. Combescure, Propagation and local-decay properties for long-range scattering of three-body systems, preprint, LPTHE, Orsay, 1984.
  • [3] Hans L. Cycon and Peter A. Perry, Local time-decay of high energy scattering states for the Schrödinger equation, Math. Z. 188 (1984), no. 1, 125–142. MR 767370 (86b:35164),
  • [4] Volker Enss, Propagation properties of quantum scattering states, J. Funct. Anal. 52 (1983), no. 2, 219–251. MR 707205 (85b:81187),
  • [5] -, Completeness of three-body quantum scattering, Dynamics and Processes (P. Blanchard, L. Streit, eds.), Lecture Notes in Math., vol. 1031, Springer-Verlag, Berlin and New York, 1984.
  • [6] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395 (13,727e)
  • [7] L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359-443.
  • [8] H. Isozaki, Differentiability of generalized Fourier transforms associated with Schrödinger equations, preprint, 1984.
  • [9] H. Isozaki and H. Kitada, Micro-local resolvent estimates for two-body Schrödinger operators, preprint, 1983.
  • [10] -, A remark on the micro-local resolvent estimates for two-body Schrödinger operators, preprint, 1983.
  • [11] Arne Jensen, Éric Mourre, and Peter Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), no. 2, 207–225 (English, with French summary). MR 769156 (86j:35126)
  • [12] Eric Mourre, Link between the geometrical and the spectral transformation approaches in scattering theory, Comm. Math. Phys. 68 (1979), no. 1, 91–94. MR 539739 (82d:81127)
  • [13] -, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys. 78 (1981), 391-408.
  • [14] -, Algebraic approach to some propagation properties of the Schrödinger equation, Mathematical Problems of Theoretical Physics (R. Schrader, R. Seiler, P. A. Uhlenbrock, eds.), Lecture Notes in Physics, vol. 153, Springer-Verlag, Berlin, 1981.
  • [15] -, Opérateurs conjugués et propriétés de propagation. I, II, Preprints, CPT-CNRS, Marseille, 1981, p. 1333; 1982, p. 1379.
  • [16] É. Mourre, Operateurs conjugués et propriétés de propagation, Comm. Math. Phys. 91 (1983), no. 2, 279–300 (French, with English summary). MR 723552 (86h:47031)
  • [17] -, Private communication.
  • [18] Peter A. Perry, Mellin transforms and scattering theory. I. Short range potentials, Duke Math. J. 47 (1980), no. 1, 187–193. MR 563375 (81c:35101)
  • [19] Peter A. Perry, Propagation of states in dilation analytic potentials and asymptotic completeness, Comm. Math. Phys. 81 (1981), no. 2, 243–259. MR 632760 (84f:81097)
  • [20] P. Perry, I. M. Sigal, and B. Simon, Spectral analysis of 𝑁-body Schrödinger operators, Ann. of Math. (2) 114 (1981), no. 3, 519–567. MR 634428 (83b:81129),
  • [21] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 0493421 (58 #12429c)
  • [22] M. Taylor, Pseudo-differential operators, Princeton Univ. Press, Princeton, N. J., 1981.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P99, 81E13, 81F05

Retrieve articles in all journals with MSC: 35P99, 81E13, 81F05

Additional Information

PII: S 0002-9947(1985)0797050-9
Article copyright: © Copyright 1985 American Mathematical Society