Symmetric positive systems with boundary characteristic of constant multiplicity
Author:
Jeffrey Rauch
Journal:
Trans. Amer. Math. Soc. 291 (1985), 167187
MSC:
Primary 35L50
MathSciNet review:
797053
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The theory of maximal positive boundary value problems for symmetric positive systems is developed assuming that the boundary is characteristic of constant multiplicity. No such hypothesis is needed on a neighborhood of the boundary. Both regularity theorems and mixed initial boundary value problems are discussed. Many classical ideas are sharpened in the process.
 [1]
Rentaro
Agemi, The initialboundary value problem for inviscid barotropic
fluid motion, Hokkaido Math. J. 10 (1981),
no. 1, 156–182. MR 616950
(82j:35124), http://dx.doi.org/10.14492/hokmj/1381758108
 [2]
Claude
Bardos and Jeffrey
Rauch, Maximal positive boundary value
problems as limits of singular perturbation problems, Trans. Amer. Math. Soc. 270 (1982), no. 2, 377–408. MR 645322
(84j:35012), http://dx.doi.org/10.1090/S00029947198206453228
 [3]
David
G. Ebin, The initialboundary value problem for subsonic fluid
motion, Comm. Pure Appl. Math. 32 (1979), no. 1,
1–19. MR
508916 (80i:76026), http://dx.doi.org/10.1002/cpa.3160320102
 [4]
K.
O. Friedrichs, The identity of weak and strong
extensions of differential operators, Trans.
Amer. Math. Soc. 55
(1944), 132–151. MR 0009701
(5,188b), http://dx.doi.org/10.1090/S00029947194400097010
 [5]
K.
O. Friedrichs, Symmetric hyperbolic linear differential
equations, Comm. Pure Appl. Math. 7 (1954),
345–392. MR 0062932
(16,44c)
 [6]
K.
O. Friedrichs, Symmetric positive linear differential
equations, Comm. Pure Appl. Math. 11 (1958),
333–418. MR 0100718
(20 #7147)
 [7]
ChoaHao Gu, Differentiable solutions of symmetric positive partial equations, Chinese J. Math 5 (1964), 541545.
 [8]
Lars
Hörmander, Linear partial differential operators,
Springer Verlag, BerlinNew York, 1976. MR 0404822
(53 #8622)
 [9]
P.
D. Lax and R.
S. Phillips, Local boundary conditions for dissipative symmetric
linear differential operators, Comm. Pure Appl. Math.
13 (1960), 427–455. MR 0118949
(22 #9718)
 [10]
J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, SpringerVerlag, Berlin and New York, 1972.
 [11]
Andrew
Majda and Stanley
Osher, Initialboundary value problems for hyperbolic equations
with uniformly characteristic boundary, Comm. Pure Appl. Math.
28 (1975), no. 5, 607–675. MR 0410107
(53 #13857)
 [12]
Robert
D. Moyer, On the nonidentity of weak and strong
extensions of differential operators, Proc.
Amer. Math. Soc. 19
(1968), 487–488. MR 0222720
(36 #5770), http://dx.doi.org/10.1090/S00029939196802227206
 [13]
T. Nishida and J. Rauch, Local existence for smooth inviscid compressible flows in bounded domains (to appear).
 [14]
Stanley
Osher, An ill posed problem for a hyperbolic
equation near a corner, Bull. Amer. Math.
Soc. 79 (1973),
1043–1044. MR 0350211
(50 #2704), http://dx.doi.org/10.1090/S000299041973133245
 [15]
Gideon
Peyser, On the differentiability of solutions
of symmetric hyperbolic systems, Proc. Amer.
Math. Soc. 14
(1963), 963–969. MR 0156102
(27 #6034), http://dx.doi.org/10.1090/S00029939196301561028
 [16]
Leonard
Sarason, Differentiable solutions of symmetrizable and singular
symmetric first order systems, Arch. Rational Mech. Anal.
26 (1967), 357–384. MR 0228808
(37 #4387)
 [17]
Leonard
Sarason, On weak and strong solutions of boundary value
problems, Comm. Pure Appl. Math. 15 (1962),
237–288. MR 0150462
(27 #460)
 [18]
R.
S. Phillips, Dissipative hyperbolic
systems, Trans. Amer. Math. Soc. 86 (1957), 109–173. MR 0090748
(19,863d), http://dx.doi.org/10.1090/S00029947195700907482
 [19]
R.
S. Phillips, Dissipative operators and hyperbolic
systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 193–254. MR 0104919
(21 #3669), http://dx.doi.org/10.1090/S00029947195901049191
 [20]
R.
S. Phillips and Leonard
Sarason, Singular symmetric positive first order differential
operators, J. Math. Mech. 15 (1966), 235–271.
MR
0186902 (32 #4357)
 [21]
Jeffrey
B. Rauch and Frank
J. Massey III, Differentiability of solutions to
hyperbolic initialboundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303–318. MR 0340832
(49 #5582), http://dx.doi.org/10.1090/S00029947197403408320
 [22]
Steve
Schochet, The compressible Euler equations in a bounded domain:
existence of solutions and the incompressible limit, Comm. Math. Phys.
104 (1986), no. 1, 49–75. MR 834481
(87f:76085)
 [23]
David
S. Tartakoff, Regularity of solutions to boundary value problems
for first order systems, Indiana Univ. Math. J. 21
(1971/72), 1113–1129. MR 0440182
(55 #13061)
 [24]
Mikio
Tsuji, Analyticity of solutions of hyperbolic mixed problems,
J. Math. Kyoto Univ. 13 (1973), 323–371. MR 0320540
(47 #9077)
 [1]
 R. Agemi, The initial boundary value problem for inviscid barotropic fluid motion, Hokkaido Math. J. 10 (1981), 186182. MR 616950 (82j:35124)
 [2]
 C. Bardos and J. Rauch, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc. 270 (1982), 377408. MR 645322 (84j:35012)
 [3]
 D. Ebin, The initial boundary value problem for subsonic fluid motion, Comm. Pure Appl. Math. 32 (1979), 119. MR 508916 (80i:76026)
 [4]
 K. O. Friedrichs, The identity of weak and strong extension of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132151. MR 0009701 (5:188b)
 [5]
 , Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7 (1954), 345392. MR 0062932 (16:44c)
 [6]
 , Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333418. MR 0100718 (20:7147)
 [7]
 ChoaHao Gu, Differentiable solutions of symmetric positive partial equations, Chinese J. Math 5 (1964), 541545.
 [8]
 L. Hormander, Linear partial differential operators, SpringerVerlag, Berlin, 1963. MR 0404822 (53:8622)
 [9]
 P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math. 13 (1960), 427454. MR 0118949 (22:9718)
 [10]
 J. L. Lions and E. Magenes, Nonhomogeneous boundary value problems and applications, SpringerVerlag, Berlin and New York, 1972.
 [11]
 A. Majda and S. Osher, Initialboundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607675. MR 0410107 (53:13857)
 [12]
 R. Moyer, On the nonidentity of weak and strong extensions of differential operators, Proc. Amer. Math. Soc. 19 (1968), 487488. MR 0222720 (36:5770)
 [13]
 T. Nishida and J. Rauch, Local existence for smooth inviscid compressible flows in bounded domains (to appear).
 [14]
 S. Osher, An illposed problem for a hyperbolic equation near a corner, Bull, Amer. Math. Soc. 79 (1973), 10431044. MR 0350211 (50:2704)
 [15]
 G. Peyser, On the differentiability of solutions of symmetric hyperbolic systems, Proc. Amer. Math. Soc. 14 (1963), 963969. MR 0156102 (27:6034)
 [16]
 L. Sarason, Differentiable solutions of symmetrizable and singular symmetric first order systems, Arch. Rational Mech. Anal. 26 (1967), 357384. MR 0228808 (37:4387)
 [17]
 , On weak and strong solutions of boundary value problems, Comm. Pure Appl. Math. 15 (1962), 237288. MR 0150462 (27:460)
 [18]
 R. S. Phillips, Dissipative hyperbolic systems, Trans. Amer. Math. Soc. 86 (1957), 109173. MR 0090748 (19:863d)
 [19]
 , Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc. 90 (1959), 249276. MR 0104919 (21:3669)
 [20]
 R. S. Phillips and L. Sarason, Singular symmetric positive first order differential operators, J. Math. Mech. 15 (1966), 235272. MR 0186902 (32:4357)
 [21]
 J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initialboundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303318. MR 0340832 (49:5582)
 [22]
 S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, preprint. MR 834481 (87f:76085)
 [23]
 D. Tartakoff, Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J. 21 (1972), 11131129. MR 0440182 (55:13061)
 [24]
 M. Tsuji, Analyticity of solutions of hyperbolic mixed problems, J. Math. Kyoto Univ. 13 (1973), 323371. MR 0320540 (47:9077)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
35L50
Retrieve articles in all journals
with MSC:
35L50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198507970534
PII:
S 00029947(1985)07970534
Keywords:
Symmetric positive boundary value problem,
characteristic boundary,
dissipative boundary conditions,
mixed initial boundary value problem
Article copyright:
© Copyright 1985
American Mathematical Society
