Symmetric positive systems with boundary characteristic of constant multiplicity

Author:
Jeffrey Rauch

Journal:
Trans. Amer. Math. Soc. **291** (1985), 167-187

MSC:
Primary 35L50

MathSciNet review:
797053

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of maximal positive boundary value problems for symmetric positive systems is developed assuming that the boundary is characteristic of constant multiplicity. No such hypothesis is needed on a neighborhood of the boundary. Both regularity theorems and mixed initial boundary value problems are discussed. Many classical ideas are sharpened in the process.

**[1]**Rentaro Agemi,*The initial-boundary value problem for inviscid barotropic fluid motion*, Hokkaido Math. J.**10**(1981), no. 1, 156–182. MR**616950**, 10.14492/hokmj/1381758108**[2]**Claude Bardos and Jeffrey Rauch,*Maximal positive boundary value problems as limits of singular perturbation problems*, Trans. Amer. Math. Soc.**270**(1982), no. 2, 377–408. MR**645322**, 10.1090/S0002-9947-1982-0645322-8**[3]**David G. Ebin,*The initial-boundary value problem for subsonic fluid motion*, Comm. Pure Appl. Math.**32**(1979), no. 1, 1–19. MR**508916**, 10.1002/cpa.3160320102**[4]**K. O. Friedrichs,*The identity of weak and strong extensions of differential operators*, Trans. Amer. Math. Soc.**55**(1944), 132–151. MR**0009701**, 10.1090/S0002-9947-1944-0009701-0**[5]**K. O. Friedrichs,*Symmetric hyperbolic linear differential equations*, Comm. Pure Appl. Math.**7**(1954), 345–392. MR**0062932****[6]**K. O. Friedrichs,*Symmetric positive linear differential equations*, Comm. Pure Appl. Math.**11**(1958), 333–418. MR**0100718****[7]**Choa-Hao Gu,*Differentiable solutions of symmetric positive partial equations*, Chinese J. Math**5**(1964), 541-545.**[8]**Lars Hörmander,*Linear partial differential operators*, Springer Verlag, Berlin-New York, 1976. MR**0404822****[9]**P. D. Lax and R. S. Phillips,*Local boundary conditions for dissipative symmetric linear differential operators*, Comm. Pure Appl. Math.**13**(1960), 427–455. MR**0118949****[10]**J. L. Lions and E. Magenes,*Non-homogeneous boundary value problems and applications*, Springer-Verlag, Berlin and New York, 1972.**[11]**Andrew Majda and Stanley Osher,*Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary*, Comm. Pure Appl. Math.**28**(1975), no. 5, 607–675. MR**0410107****[12]**Robert D. Moyer,*On the nonidentity of weak and strong extensions of differential operators*, Proc. Amer. Math. Soc.**19**(1968), 487–488. MR**0222720**, 10.1090/S0002-9939-1968-0222720-6**[13]**T. Nishida and J. Rauch,*Local existence for smooth inviscid compressible flows in bounded domains*(to appear).**[14]**Stanley Osher,*An ill posed problem for a hyperbolic equation near a corner*, Bull. Amer. Math. Soc.**79**(1973), 1043–1044. MR**0350211**, 10.1090/S0002-9904-1973-13324-5**[15]**Gideon Peyser,*On the differentiability of solutions of symmetric hyperbolic systems*, Proc. Amer. Math. Soc.**14**(1963), 963–969. MR**0156102**, 10.1090/S0002-9939-1963-0156102-8**[16]**Leonard Sarason,*Differentiable solutions of symmetrizable and singular symmetric first order systems*, Arch. Rational Mech. Anal.**26**(1967), 357–384. MR**0228808****[17]**Leonard Sarason,*On weak and strong solutions of boundary value problems*, Comm. Pure Appl. Math.**15**(1962), 237–288. MR**0150462****[18]**R. S. Phillips,*Dissipative hyperbolic systems*, Trans. Amer. Math. Soc.**86**(1957), 109–173. MR**0090748**, 10.1090/S0002-9947-1957-0090748-2**[19]**R. S. Phillips,*Dissipative operators and hyperbolic systems of partial differential equations*, Trans. Amer. Math. Soc.**90**(1959), 193–254. MR**0104919**, 10.1090/S0002-9947-1959-0104919-1**[20]**R. S. Phillips and Leonard Sarason,*Singular symmetric positive first order differential operators*, J. Math. Mech.**15**(1966), 235–271. MR**0186902****[21]**Jeffrey B. Rauch and Frank J. Massey III,*Differentiability of solutions to hyperbolic initial-boundary value problems*, Trans. Amer. Math. Soc.**189**(1974), 303–318. MR**0340832**, 10.1090/S0002-9947-1974-0340832-0**[22]**Steve Schochet,*The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit*, Comm. Math. Phys.**104**(1986), no. 1, 49–75. MR**834481****[23]**David S. Tartakoff,*Regularity of solutions to boundary value problems for first order systems*, Indiana Univ. Math. J.**21**(1971/72), 1113–1129. MR**0440182****[24]**Mikio Tsuji,*Analyticity of solutions of hyperbolic mixed problems*, J. Math. Kyoto Univ.**13**(1973), 323–371. MR**0320540**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35L50

Retrieve articles in all journals with MSC: 35L50

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1985-0797053-4

Keywords:
Symmetric positive boundary value problem,
characteristic boundary,
dissipative boundary conditions,
mixed initial boundary value problem

Article copyright:
© Copyright 1985
American Mathematical Society