Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The homotopy theory of cyclic sets


Authors: W. G. Dwyer, M. J. Hopkins and D. M. Kan
Journal: Trans. Amer. Math. Soc. 291 (1985), 281-289
MSC: Primary 55P15; Secondary 18F25, 19D55, 55U35
DOI: https://doi.org/10.1090/S0002-9947-1985-0797060-1
MathSciNet review: 797060
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this note is to show that the homotopy theory of the cyclic sets of Connes [3] is equivalent to that of $ \operatorname{SO} (2)$-spaces (i.e. spaces with a circle action) and hence to that of spaces over $ K(Z,2)$.


References [Enhancements On Off] (What's this?)

  • [1] K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419-458. MR 0341469 (49:6220)
  • [2] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localization, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972. MR 0365573 (51:1825)
  • [3] A. Connes, Cyclic cohomology and functors $ {\operatorname{Ext} ^n}$, C. R. Acad. Sci. Paris 296 (1983), 953-958. MR 777584 (86d:18007)
  • [4] E. Dror, W. G. Dwyer and D. M. Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980), 670-672. MR 587952 (82a:55009)
  • [5] W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980), 427-440. MR 584566 (81m:55018)
  • [6] -, Singular functors and realization functors, Nederl. Akad. Wetensch. Indag. Math. A87 = Indag. Math. 45 (1984), 147-153. MR 749528 (86c:55010d)
  • [7] -, Equivariant homotopy classification, J. Pure Appl. Algebra (to appear). MR 777259 (86h:55008)
  • [8] T. G. Goodwillie, Cyclic homotopy derivations and the free loop space, preprint.
  • [9] D. G. Quillen, Homotopical algebra, Lecture Notes in Math., vol. 43, Springer-Verlag, 1967. MR 0223432 (36:6480)
  • [10] -, Higher algebraic $ K$-theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, 1973, pp. 85-147.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P15, 18F25, 19D55, 55U35

Retrieve articles in all journals with MSC: 55P15, 18F25, 19D55, 55U35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0797060-1
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society