Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The cuspidal group and special values of $ L$-functions


Author: Glenn Stevens
Journal: Trans. Amer. Math. Soc. 291 (1985), 519-550
MSC: Primary 11G16; Secondary 11F11, 11G30, 11G40, 14G10
MathSciNet review: 800251
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The structure of the cuspidal divisor class group is investigated by relating this structure to arithmetic properties of special values of $ L$-functions of weight two Eisenstein series. A new proof of a theorem of Kubert (Proposition 3.1) concerning the group of modular units is derived as a consequence of the method. The key lemma is a nonvanishing result (Theorem 2.1) for values of the ``$ L$-function'' attached to a one-dimensional cohomology class over the relevant-congruence subgroup. Proposition 4.7 provides data regarding Eisenstein series and associated subgroups of the cuspidal divisor class group which the author hopes will simplify future calculations in the cuspidal group.


References [Enhancements On Off] (What's this?)

  • [1] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803
  • [2] V. G. Drinfel′d, Two theorems on modular curves, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 83–84 (Russian). MR 0318157
  • [3] B. Gross and J. Lubin, The Eisenstein descent at level $ N = {p^2}$ (to appear).
  • [4] Kenkichi Iwasawa, Lectures on 𝑝-adic 𝐿-functions, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 74. MR 0360526
  • [5] S. Kamienny and G. Stevens, Special values of 𝐿-functions attached to 𝑋₁(𝑁), Compositio Math. 49 (1983), no. 1, 121–142. MR 699863
  • [6] Daniel S. Kubert and Serge Lang, Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Springer-Verlag, New York-Berlin, 1981. MR 648603
  • [7] Daniel S. Kubert, The square root of the Siegel group, Proc. London Math. Soc. (3) 43 (1981), no. 2, 193–226. MR 628275, 10.1112/plms/s3-43.2.193
  • [8] -, The square root of the Siegel group-even case, Manuscript, 1982.
  • [9] Serge Lang, Cyclotomic fields, Springer-Verlag, New York-Heidelberg, 1978. Graduate Texts in Mathematics, Vol. 59. MR 0485768
  • [10] Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
  • [11] Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66 (Russian). MR 0314846
  • [12] B. Mazur, On the arithmetic of special values of 𝐿 functions, Invent. Math. 55 (1979), no. 3, 207–240. MR 553997, 10.1007/BF01406841
  • [13] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186 (1978). MR 488287
  • [14] B. Mazur and A. Wiles, Class fields of abelian extensions of 𝑄, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, 10.1007/BF01388599
  • [15] Andrew Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993
  • [16] Hans Rademacher and Emil Grosswald, Dedekind sums, The Mathematical Association of America, Washington, D.C., 1972. The Carus Mathematical Monographs, No. 16. MR 0357299
  • [17] Bruno Schoeneberg, Elliptic modular functions: an introduction, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt; Die Grundlehren der mathematischen Wissenschaften, Band 203. MR 0412107
  • [18] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • [19] Glenn Stevens, Arithmetic on modular curves, Progress in Mathematics, vol. 20, Birkhäuser Boston, Inc., Boston, MA, 1982. MR 670070
  • [20] Lawrence C. Washington, Class numbers and 𝑍_{𝑝}-extensions, Math. Ann. 214 (1975), 177–193. MR 0364182
  • [21] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11G16, 11F11, 11G30, 11G40, 14G10

Retrieve articles in all journals with MSC: 11G16, 11F11, 11G30, 11G40, 14G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0800251-4
Article copyright: © Copyright 1985 American Mathematical Society