Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Projective modules in the category $ {\scr O}\sb S$: self-duality

Author: Ronald S. Irving
Journal: Trans. Amer. Math. Soc. 291 (1985), 701-732
MSC: Primary 17B10; Secondary 22E47
MathSciNet review: 800259
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a parabolic subalgebra $ {\mathfrak{p}_S}$ of a complex, semisimple Lie algebra $ \mathfrak{g}$, there is a naturally defined category $ {\mathcal{O}_S}$ of $ \mathfrak{g}$-modules which includes all the $ \mathfrak{g}$-modules induced from finite-dimensional $ {\mathfrak{p}_S}$-modules. This paper treats the question of whether certain projective modules in $ {\mathcal{O}_S}$ are isomorphic to their dual modules. The projectives in question are the projective covers of those simple modules occurring in the socles of generalized Verma modules. Their self-duality is proved in a number of cases, and additional information is obtained on the generalized Verma modules.

References [Enhancements On Off] (What's this?)

  • [1] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, A category of $ \mathfrak{g}$-modules, Functional Anal. Appl. 10 (1976), 1-8. MR 0407097 (53:10880)
  • [2] B. D. Boe and D. H. Collingwood, A comparison theory for the structure of induced representations. II, preprint, April 1984. MR 793343 (87b:22026b)
  • [3] W. Borho and J. C. Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), 1-53. MR 0453826 (56:12079)
  • [4] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-VI, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [5] T. J. Enright and B. Shelton, Decompositions in categories of highest weight modules, preprint, 1984. MR 840583 (87i:22037)
  • [6] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. 14 (1981), 261-302. MR 644519 (83e:17009)
  • [7] J. E. Humphreys, A construction of projective modules in the category $ \mathcal{O}$ of Bernstein-Gelfand-Gelfand, Indag. Math. 39 (1977), 301-303. MR 0466244 (57:6124)
  • [8] R. S. Irving, Projective modules in the category $ O$, typescript, 1982.
  • [9] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., vol. 750, Springer-Verlag, Berlin, Heidelberg and New York, 1979. MR 552943 (81m:17011)
  • [10] -, Einhüllende Algebren halbeinfacher Lie-Algebren, Springer-Verlag, Berlin, Heidelberg and New York, 1983. MR 721170 (86c:17011)
  • [11] A. Joseph, Three topics in enveloping algebras, preprint, 1984.
  • [12] J. Lepowsky, Generalized Verma modules, the Cartan-Helgason theorem and the Harish-Chandra homomorphism, J. Algebra 49 (1977), 470-495. MR 0463360 (57:3312)
  • [13] A. Rocha-Caridi, Splitting criteria for $ \mathfrak{g}$-modules induced from a parabolic and the Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $ \mathfrak{g}$-module, Trans. Amer. Math. Soc. 262 (1980), 335-366. MR 586721 (82f:17006)
  • [14] T. Springer, Quelques applications de la cohomologie d'intersection, Exp. 589 in Séminaire Bourbaki 1981/82, Astérisque 92-93 (1982). MR 689533 (85i:32016b)
  • [15] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Alg. Disc. Math. 1 (1980), 168-184. MR 578321 (82j:20083)
  • [16] D. A. Vogan, Jr., Irreducible characters of semisimple Lie groups. II. The Kazhdan Lusztig conjectures, Duke Math. J. 46 (1979), 805-859. MR 552528 (81f:22024)
  • [17] D. Barbasch, Filtrations on Verma modules, Ann. Sci. École Norm. Sup. 16 (1983), 489-494. MR 740080 (85j:17013)
  • [18] D. H. Collingwood, The $ \mathfrak{n}$-homology of Harish-Chandra modules I: generalizing a theorem of Kostant, preprint, February 1984.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10, 22E47

Retrieve articles in all journals with MSC: 17B10, 22E47

Additional Information

Keywords: Generalized Verma modules, category $ \mathcal{O}$
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society