Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Duality theorems in deformation theory


Author: Hubert Goldschmidt
Journal: Trans. Amer. Math. Soc. 292 (1985), 1-49
MSC: Primary 58H15; Secondary 17B56, 58G05
DOI: https://doi.org/10.1090/S0002-9947-1985-0805952-X
MathSciNet review: 805952
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a unified treatment of the construction of the Calabi sequence, which is a resolution of the sheaf of Killing vector fields on a Riemannian manifold of constant curvature, and of the resolution of the sheaf of conformal Killing vector fields on a conformally flat Riemannian manifold of dimension $ \geqslant 3$ introduced in [7]. We also explain why the latter resolution is selfadjoint and associate to certain geometric structures selfadjoint resolutions of their infinitesimal automorphisms.


References [Enhancements On Off] (What's this?)

  • [1] M. Berger, Les espaces symétriques non compacts, Ann. Sci. École Norm. Sup. (3) 74 (1957), 85-177. MR 0104763 (21:3516)
  • [2] E. Calabi, On compact, Riemannian manifolds with constant curvature. I, Differential Geometry, Proc. Sympos. Pure Math., vol. 3, Amer. Math. Soc., Providence, R.I., 1961, pp. 155-180. MR 0133787 (24:A3612)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Math. Series, No. 19, Princeton Univ. Press, Princeton, N.J., 1956. MR 0077480 (17:1040e)
  • [4] C. Chevalley, Theory of Lie groups. I, Princeton Math. Series, No. 8, Princeton Univ. Press, Princeton, N.J., 1946. MR 0082628 (18:583c)
  • [5] J. Gasqui and H. Goldschmidt, Déformations infinitésimales des espaces riemanniens localement symétriques. I, Adv. in Math. 48 (1983), 205-285. MR 704386 (85g:58099)
  • [6] -, Théorémes de dualité en géométrie conforme, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 99-102, 201-203.
  • [7] -, Déformations infinitésimales des structures conformes plates, Progress in Mathematics, Vol. 52, Birkhäuser, Boston, Basel and Stuttgart, 1984. MR 776970 (86m:58156)
  • [8] H. Goldschmidt, Existence theorems for analytic linear partial differential equations, Ann. of Math. (2) 86 (1967), 246-270. MR 0219859 (36:2933)
  • [9] -, Sur la structure des équations de Lie. II. Équations formellement transitives, J. Differential Geom. 7 (1972), 67-95. MR 0326783 (48:5126)
  • [10] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [11] S. Kobayashi, Transformation groups in differential geometry, Ergebnisse der Math. und ihrer Grenzgebiete, Band 70, Springer-Verlag, Berlin, Heidelberg and New York, 1972. MR 0355886 (50:8360)
  • [12] S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875-907. MR 0168704 (29:5961)
  • [13] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR 0142696 (26:265)
  • [14] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357. MR 527548 (81a:53049)
  • [15] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, No. 76, Princeton Univ. Press, Princeton, N.J., and Univ. of Tokyo Press, Tokyo, 1974. MR 0440554 (55:13428)
  • [16] T. Ochiai, Geometry associated with semisimple flat homogeneous spaces, Trans. Amer. Math. Soc. 152 (1970), 159-193. MR 0284936 (44:2160)
  • [17] D. C. Spencer, Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75 (1969), 179-239. MR 0242200 (39:3533)
  • [18] M. Spivak, A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish, Inc., Berkeley, Calif., 1970.
  • [19] N. Steenrod, The topology of fibre bundles, Princeton Math. Series, No. 14, Princeton Univ. Press, Princeton, N.J., 1951. MR 0039258 (12:522b)
  • [20] K. Kodaira, On deformations of some complex pseudo-group structures, Ann. of Math. (2) 71 (1960), 224-302. MR 0115190 (22:5992)
  • [21] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328-466. MR 0112154 (22:3009)
  • [22] J. Lafontaine, Modules de structures conformes plates et cohomologie de groupes discrets, C. R. Acad. Sc. Paris Sér. I Math. 297 (1983), 655-658. MR 738698 (85k:53042)
  • [23] D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I, II, Ann. of Math. (2) 76 (1962), 306-445. MR 0156363 (27:6287a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58H15, 17B56, 58G05

Retrieve articles in all journals with MSC: 58H15, 17B56, 58G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0805952-X
Keywords: Selfadjoint resolution, space of constant curvature, conformally flat Riemannian manifold, semisimple Lie algebra, differential operator, spectral sequence
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society