Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quasiconformal and bi-Lipschitz homeomorphisms, uniform domains and the quasihyperbolic metric


Author: Gaven J. Martin
Journal: Trans. Amer. Math. Soc. 292 (1985), 169-191
MSC: Primary 30C60
DOI: https://doi.org/10.1090/S0002-9947-1985-0805959-2
MathSciNet review: 805959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ be a proper subdomain of $ {R^n}$ and $ {k_D}$ the quasihyperbolic metric defined by the conformal metric tensor $ d{\overline s ^2} = \operatorname{dist} {(x,\partial D)^{ - 2}}d{s^2}$. The geodesics for this and related metrics are shown, by purely geometric methods, to exist and have Lipschitz continuous first derivatives. This is sharp for $ {k_D}$; we also obtain sharp estimates for the euclidean curvature of such geodesics. We then use these results to prove a general decomposition theorem for uniform domains in $ {R^n}$, in terms of embeddings of bi-Lipschitz balls. We also construct a counterexample to the higher dimensional analogue of the decomposition theorem of Gehring and Osgood.


References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963). MR 0154978 (27:4921)
  • [2] R. Daverman, Embeddings of $ (n - 1)$-spheres in euclidean $ n$-space, Bull. Amer. Math. Soc. 84 (1978). MR 0645404 (58:31096)
  • [3] F. W. Gehring, Injectivity of local quasi-isometries, Comment. Math. Helv. 57 (1982). MR 684113 (84b:30018)
  • [4] F. W. Gehring and B. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979). MR 581801 (81k:30023)
  • [5] F. W. Gehring and B. Palka, Quasiconformally homogeneous domain, J. Analyse Math. 30 (1976). MR 0437753 (55:10676)
  • [6] F. W. Gehring and J. Väisälä, The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965). MR 0180674 (31:4905)
  • [7] P. W. Jones, Extension theorems for $ BMO$, Indiana Univ. Math. J. 29 (1980). MR 554817 (81b:42047)
  • [8] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. AI 4 (1978/1979). MR 565886 (81i:30039)
  • [9] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [10] T. B. Rushing, Topological embeddings, Academic Press, New York, 1973. MR 0348752 (50:1247)
  • [11] J. Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes Math., vol. 229, Springer-Verlag, Berlin and New York, 1971.
  • [12] G. J. Martin, Quasiconformal groups which are not the quasiconformal conjugates of Möbius groups (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C60

Retrieve articles in all journals with MSC: 30C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0805959-2
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society