Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Brownian motion with polar drift


Author: R. J. Williams
Journal: Trans. Amer. Math. Soc. 292 (1985), 225-246
MSC: Primary 60J60; Secondary 60J65
MathSciNet review: 805961
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a strong Markov process $ {X^0}$ that has continuous sample paths in $ {R^d}(d \geqslant 2)$ and the following two properties.

(1) Away from the origin $ {X^0}$ behaves like Brownian motion with a polar drift given in spherical polar coordinates by $ \mu (\theta )/2r$. Here $ \mu $ is a bounded Borel measurable function on the unit sphere in $ {R^d}$, with average value $ \overline \mu $.

(2) $ {X^0}$ is absorbed at the origin. It is shown that $ {X^0}$ reaches the origin with probability zero or one as $ \overline \mu \geqslant 2 - d$ or $ < 2 - d$. Indeed, $ {X^0}$ is transient to $ + \infty $ if $ \overline \mu > 2 - d$ and null recurrent if $ \bar \mu = 2 - d$. Furthermore, if $ \bar \mu < 2 - d$ (i.e., $ {X^0}$ reaches the origin), then $ {X^0}$ does not approach the origin in any particular direction. Indeed, there is a single Martin boundary point for $ {X^0}$ at the origin. The question of the existence and uniqueness of a strong Markov process with continuous sample paths in $ {R^d}$ that behaves like $ {X^0}$ away from the origin, but spends zero time there (in the sense of Lebesgue measure), is also resolved here.


References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz, and I. A. Stegun, Handbook of mathematical functions, National Bureau of Standards, Appl. Math. Series 55, 1968.
  • [2] Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York-Berlin, 1982. MR 648601
  • [3] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 0341212
  • [4] Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 0466593
  • [5] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • [6] Kiyosi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected; Die Grundlehren der mathematischen Wissenschaften, Band 125. MR 0345224
  • [7] David G. Kendall, Pole-seeking Brownian motion and bird navigation, J. Roy. Statist. Soc. Ser. B 36 (1974), 365–417. With discussion by Violet Cane, J. A. Nelder, K. V. Mardia, John Kent, Trevor Williams, G. J. G. Upton, G. E. H. Reuter, R. M. Cormack, T. Lewis, R. Loynes, Jill Siegerstetter, H. Soloman, M. A. Stephens and David Williams. MR 0423561
  • [8] M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation 1950 (1950), no. 26, 128. MR 0038008
  • [9] R. S. Liptser and A. N. Shiryayev, Statistics of random processes. I, Springer-Verlag, New York-Heidelberg, 1977. General theory; Translated by A. B. Aries; Applications of Mathematics, Vol. 5. MR 0474486
  • [10] D. Revuz, Markov chains, 2nd ed., North-Holland Mathematical Library, vol. 11, North-Holland Publishing Co., Amsterdam, 1984. MR 758799
  • [11] L. C. G. Rogers, Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 2, 237–255. MR 701528, 10.1007/BF00538964
  • [12] D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients, Comm. Pure Appl. Math. 22 (1969), I: 345-400, II: 479-530.
  • [13] Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147–225. MR 0277037
  • [14] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
  • [15] S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), no. 4, 405–443. MR 792398, 10.1002/cpa.3160380405
  • [16] R. J. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge, Ann. Probab. 13 (1985), no. 3, 758–778. MR 799421

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 60J65

Retrieve articles in all journals with MSC: 60J60, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0805961-0
Keywords: Brownian motion, pole, drift, diffusion, Martin boundary, martingale, twisted product
Article copyright: © Copyright 1985 American Mathematical Society