Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Algebraic and etale $ K$-theory


Authors: William G. Dwyer and Eric M. Friedlander
Journal: Trans. Amer. Math. Soc. 292 (1985), 247-280
MSC: Primary 18F25; Secondary 11R70, 19F27, 55N15
DOI: https://doi.org/10.1090/S0002-9947-1985-0805962-2
MathSciNet review: 805962
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define etale $ K$-theory, interpret various conjectures of Quillen and Lichtenbaum in terms of a map from algebraic $ K$-theory to etale $ K$-theory, and then prove that this map is surjective in many cases of interest.


References [Enhancements On Off] (What's this?)

  • [1] S. Araki and H. Toda, Multiplicative structures on $ \bmod q$ cohomology theories. I, Osaka J. Math. 2 (1965), 71-115. MR 0182967 (32:449)
  • [2] A. Borel, Cohomology of arithemtic groups, Proc. 1974 Internat. Congress of Mathematicians, Vol. I, Canad. Math. Soc., 1975, pp. 435-442. MR 0578905 (58:28281)
  • [3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer, New York, 1972. MR 0365573 (51:1825)
  • [4] -, Pairings and products in the homotopy spectral sequence, Trans. Amer. Math. Soc. 177 (1973), 319-343. MR 0372860 (51:9064)
  • [5] W. Browder, Algebraic $ K$-theory with coefficients $ Z/p$, Geometric Applications of Homotopy Theory, Lecture Notes in Math., vol. 657, Springer, New York, 1977, pp. 40-84. MR 513541 (80b:18011)
  • [6] P. Deligne, Cohomologie etale $ ({\text{SGA}}\;4\;1/2)$, Lecture Notes in Math., vol. 569. Springer, New York, 1977. MR 0463174 (57:3132)
  • [7] W. Dwyer and E. Friedlander, Etale $ K$-theory and arithmetic, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 453-455. MR 648533 (83b:12012)
  • [8] W. Dwyer, E. Friedlander, V. Snaith and R. Thomason, Algebraic $ K$-theory eventually surjects onto topological $ K$-theory, Invent. Math. 66 (1982), 481-491. MR 662604 (84i:14015)
  • [9] W. Dwyer and D. M. Kan, An obstruction theory for diagrams of simplicial sets (to appear). MR 749527 (86c:55010c)
  • [10] E. Friedlander, Maps between localized homogeneous spaces, Topology 16 (1977), 205-216. MR 0501047 (58:18511)
  • [11] -, The infinite loop Adams conjecture via classification theorems for $ \mathcal{F}$-spaces, Math. Proc. Cambridge Philos. Soc. 87 (1980), 109-150. MR 549303 (81b:55023)
  • [12] -, Etale $ K$-theory I: Connections with etale cohomology and algebraic vector bundles, Invent. Math. 60 (1980), 105-134. MR 586424 (82e:14029)
  • [13] -, Etale $ K$-theory II: Connections with algebraic $ K$-theory, Ann. Sci. École Norm. Sup. (4) 15 (1982), 231-256. MR 683636 (85c:14014)
  • [14] -, Etale homotopy of simplicial schemes, Ann. of Math. Stud., no. 104, Princeton Univ. Press, Princeton, N. J., 1982. MR 676809 (84h:55012)
  • [15] J. Giraud, Cohomologie non Abelienne, Springer, New York, 1971. MR 0344253 (49:8992)
  • [16] D. Grayson, Higher algebraic $ K$-theory II (after D. Quillen), Algebraic $ K$-theory, Lecture Notes in Math., vol. 551, Springer, New York, 1976, pp. 217-240. MR 0574096 (58:28137)
  • [17] -, Finite generation of $ K$-groups of a curve over a finite field (after D. Quillen), Lecture Notes in Math., vol. 966, Springer, New York, 1982, pp. 69-90.
  • [18] G. Harder, Die Kohomologie $ S$-arithmetisches Gruppen über Funktionenkorpen, Invent. Math. 42 (1977), 135-175. MR 0473102 (57:12780)
  • [19] S. Lichtenbaum, Values of zeta functions, etale cohomology, and algebraic $ K$-theory; classical algebraic $ K$-theory and connections with arithmetic, Lecture Notes in Math., vol. 342, Springer, New York, 1973, pp. 489-501. MR 0406981 (53:10765)
  • [20] J. L. Loday, $ K$-theorie algebrique et representations de groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), 309-377. MR 0447373 (56:5686)
  • [21] S. Mac Lane, Categories for the working mathematician, Springer, New York, 1971. MR 1712872 (2001j:18001)
  • [22] J. P. May, Simplicial objects in algebraic topology, Van Nostrand, Princeton, N.J., 1967. MR 0222892 (36:5942)
  • [23] -, $ {E_\infty }$-spaces, group completions and permutative categories, New Developments in Topology, London Math. Soc. Lecture Note Ser., Vol. 11, Cambridge University Press, Cambridge, 1974, pp. 61-93. MR 0339152 (49:3915)
  • [24] -, The spectra associated to permutative categories, Topology 17 (1978), 225-228. MR 508886 (80e:55015)
  • [25] -, Pairings of categories and spectra, J. Pure Appl. Algebra 19 (1980), 299-346. MR 593258 (82c:55010)
  • [26] D. McDuff and G. Segal, Homology fibrations and the "group completion" theorem, Invent. Math. 31 (1976), 279-284. MR 0402733 (53:6547)
  • [27] A. S. Merkurjev and A. A. Suslin, $ K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk USSR (to appear).
  • [28] J. S. Milne, Etale cohomology, Princeton Univ. Press, Princeton, N.J., 1980. MR 559531 (81j:14002)
  • [29] J. Milnor, Introduction to algebraic $ K$-theory, Ann. of Math. Studies, no. 72, Princeton Univ. Press, Princeton, N.J., 1971. MR 0349811 (50:2304)
  • [30] D. G. Quillen, On the cohomology and $ K$-theory of the general linear group over finite fields, Ann. of Math. (2) 96 (1972), 552-586. MR 0315016 (47:3565)
  • [31] -, Finite generation of the groups $ {K_i}$ of rings of algebraic integers, Lecture Notes in Math., vol. 341, Springer, New York, 1973, pp. 179-198. MR 0349812 (50:2305)
  • [32] -, Higher algebraic $ K$-theory I, Lecture Notes in Math., vol. 341, Springer, New York, 1973, pp. 85-147. MR 0338129 (49:2895)
  • [33] -, Higher algebraic $ K$-theory, Proc. 1974 Internat. Congress of Mathematicians, Vol. I, Canad. Math. Soc., 1975, pp. 171-176.
  • [34] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR 0232393 (38:718)
  • [35] -, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 0353298 (50:5782)
  • [36] J. P. Serre, Cohomologie Galoisienne, Springer, New York, 1964.
  • [37] C. Soulé, $ K$-théorie des anneaux d'entièrs de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295. MR 553999 (81i:12016)
  • [38] -, On higher $ p$-adic regulartors, Algebraic $ K$-theory, Lecture Notes in Math., vol. 854, Springer. New York, 1981, pp. 372-401.
  • [39] -, Operations on etale $ K$-theory. Applications, Lecture Notes in Math., vol. 966, Springer, New York, 1982, pp. 271-303.
  • [40] J. Tate, Relations between $ {K_2}$ and Galois cohomology, Invent. Math. 36 (1976), 257- 274. MR 0429837 (55:2847)
  • [41] R. Thomason, The Lichtenbaum-Quillen conjecture for $ K/{l_{\ast}}[{\beta ^{ - 1}}]$, Current Trends in Algebraic Topology, Canadian Math. Soc. Conf. Proc., Vol. 2, Part I, Amer. Math. Soc., Providence. R.I., 1982, pp. 117-139. MR 686114 (84f:18024)
  • [42] -, Riemann-Roch for algebraic versus topological $ K$-theory, J. Pure Appl. Algebra 27 (1983). 87-109. MR 680887 (85c:14013)
  • [43] -, Absolute cohomological purity, preprint, Johns Hopkins University.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18F25, 11R70, 19F27, 55N15

Retrieve articles in all journals with MSC: 18F25, 11R70, 19F27, 55N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0805962-2
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society