LP ESTIMATES FOR SCHRÖDINGER EVOLUTION EQUATIONS

M. BALABANE AND H. A. EMAMI-RAD

ABSTRACT. We prove that for Cauchy data in $L^1(\mathbb{R}^n)$, the solution of a Schrödinger evolution equation with constant coefficients of order $2m$ is uniformly bounded for $t \neq 0$, with bound $(1 + |t|^{-c})$, where c is an integer, $c > n/2m - 1$. Moreover it belongs to $L^q(\mathbb{R}^n)$ if $q > q(m, n)$, with its L^q norm bounded by $(|t|^{-c'} + |t|^{-c})$, where c' is an integer, $c' > n/q$. A maximal local decay result is proved. Interpolating between L^1 and L^2, we derive (L^p, L^q) estimates.

On the other hand, we prove that for Cauchy data in $L^p(\mathbb{R}^n)$, such a Cauchy problem is well posed as a distribution in the t-variable with values in $L^p(\mathbb{R}^n)$, and we compute the order of the distribution. We apply these two results to the study of Schrödinger equations with potential in $L^p(\mathbb{R}^n)$. We give an estimate of the resolvent operator in that case, and prove an asymptotic boundedness for the solution when the Cauchy data belongs to a subspace of $L^p(\mathbb{R}^n)$.

1. Introduction. In this paper we study Schrödinger evolution equations

(*) $\frac{\partial U}{\partial t} = (iP(D) + V(x))U, \quad U(0, x) = U_0(x) \in L^p(\mathbb{R}^n),$

where

$$D = \left(\frac{1}{i} \frac{\partial}{\partial x_1}, \ldots, \frac{1}{i} \frac{\partial}{\partial x_n} \right)$$

and $P(\xi)$ is an elliptic polynomial of order $2m$ with $\text{Im} P_{2m}(\xi) = 0$. It is well known that in the case where $\text{Im} P_{2m}(\xi) > 0$ (Heat equation), the solution belongs to $L^p(\mathbb{R}^n)$ in the x-variables for $t > 0$. In the case where $\text{Im} P_{2m}(\xi) < 0$ (backward Heat equation), there are no L^p estimates of the solution by the L^p norm of the Cauchy data. We are concerned with the limiting case of the Schrödinger equation

where $\text{Im} P_{2m}(\xi) = 0$.

Hörmander [7] proved that even in the simplest case (where P is the Laplacian of \mathbb{R}^n) the problem is not well posed in the usual sense in $L^p(\mathbb{R}^n)$ if $p \neq 2$: $e^{-it\xi^2}$ is not a multiplier of L^p $(p \neq 2)$. This implies that the Hille-Yosida estimates of the resolvent of $(iP(D) + V(x))$ viewed as an operator in $L^p(\mathbb{R}^n)$ are not fulfilled. In Balabane and Emami-Rad [1] we proved that for the usual Schrödinger equation $(P(D) = \Delta, V = 0)$ the problem (*) is well posed in $L^p(\mathbb{R}^n)$, for any p, in the distribution sense in the t-variable. In [2] we proved that the result remains true with $V = 0$ and $P(D)$ a homogeneous system with constant coefficients. For that
aim, the abstract tool of Smooth Distribution Semigroups was introduced and a Hille-Yosida theorem proved for such semigroups.

In this paper we study the equation including a potential \(V(x) \in L^r(\mathbb{R}^n) \) and we drop the homogeneity condition. We prove that in this case, the problem (*) is still well posed in the distribution sense in the \(t \)-variable with values in \(L^p(\mathbb{R}^n) \), and we compute the order of the distribution. We derive precise estimates of the \(L^p(\mathbb{R}^n) \) norm of the resolvent operator \((\lambda I - (iP(D) + V))^{-1} \). We prove uniform boundedness for the solution when Cauchy data belongs to a subspace of \(L^p(\mathbb{R}^n) \).

Another related problem is the uniform boundedness of the solution of the Cauchy problem (*) when \(U_0 \) belongs to \(L^1(\mathbb{R}^n) \) and for \(t \neq 0 \). We prove that in the constant coefficients case, if the restriction of \(P(\xi) \) to the unit sphere fulfills a nondegeneracy condition, then the solution belongs to \(L^\infty(\mathbb{R}^n) \) for \(t \neq 0 \). For \(n > 3 + 2/m - 1 \) it belongs to \(L^q(\mathbb{R}^n) \) for \(q > q(m,n) \). It decays locally as \(|t|^{-n/2} \).

This is done using the foliation of \(\mathbb{R}^n \) by the wave surfaces \(P(\xi) = cte \), and applying the stationary phase method to estimate the integrals involved. As a corollary we prove \((L^p, L^{p'}) \) and \((L^p, L^q) \) estimates for the Cauchy problem (*). (Estimates of this type have been given by Brenner [4] for the wave equation using hyperbolicity.)

In §2 \((L^1, L^q) \) estimates are proved for \(V = 0 \). In §3 \((L^p, L^{p'}) \) estimates are derived, and \((L^p, L^q) \) estimates are established. The Cauchy problem (*) in \(L^p \) with \(V = 0 \) is studied in §4. Smooth distribution semigroups are introduced. In §5 the Cauchy problem (*) is solved and \((L^p, L^p) \) estimates are given for the solution and for the resolvent operator.

REMARK. As usual the notation \((L^p, L^q) \) means estimates of the \(L^q \) norm of the solution of (*) when the Cauchy data belongs to \(L^p \). \(p' \) is the conjugate index of \(p \).

2. Behaviour of the solutions for Cauchy data in \(L^1(\mathbb{R}^n) \). We consider the Cauchy problem (with constant coefficients)

\[
(\star\star) \quad \partial U/\partial t = iP(D)U, \quad U(0,x) = U_0(x),
\]

where \(U_0(x) \in S(\mathbb{R}^n) \); the solution is given by

\[
U(t,x) = \mathcal{F}(e^{itP(\xi)}) \ast U_0
\]

(where \(\mathcal{F} \) denotes the usual Fourier transform, \(\mathcal{F} \) its inverse, and \(\mathcal{F}(e^{itP(\xi)}) \) is defined as an oscillatory integral).

The aim of this section is to estimate the \(L^q \) norm in the \(x \)-variable of \(U(t,x) \) by the \(L^1 \) norm of \(U_0 \). So what we have to prove is that \(\mathcal{F}(e^{itP(\xi)}) \) belongs to \(L^q \) for any fixed \(t \neq 0 \). This will be done using foliation of the exterior of a compact set of \(\mathbb{R}^n \) by the wave surfaces of \(P \). The Stationary Phase Method (Duistermaat [5]) then gives the behaviour of the integrals defining \(\mathcal{F}(e^{itP(\xi)}) \).

Suitable hypotheses for proving the estimates are:

(H1) \(P(\xi) \) is a real valued elliptic polynomial, with principal part \(p(\xi) \) of degree \(2m \).

(H2) For \(u \in S^{n-1} \) (the unit sphere of \(\mathbb{R}^n \)), the restriction to \(S^{n-1} \) of \(\psi(\xi) = \langle u, \xi \rangle p^{-1/2m}(\xi) \) is nondegenerate at its critical points (i.e. \(d_{\omega(\xi)}^2(\langle u, \omega \rangle p^{-1/2m}(\omega)) = 0 \)).
(H3) \(m \geq 1 \) and \(n \geq 3 \), or
(H3') \(m \geq 2 \) and \(n > 3 + 2/(m - 1) \).

Let \(c \) and \(c' \) be integers with \(c > n/2m - 1 \) and \(c' > n/q \).

Let
\[
\frac{1}{q(m,n)} = \frac{(m-1)(n-3)}{(2m-1)n} - \frac{2}{(2m-1)n}.
\]

The estimates are

Theorem 1. (a) If (H1), (H2) and (H3) are fulfilled, the solution \(U(t, \cdot) \) of the
Cauchy problem (***) with Cauchy data in \(L^1(\mathbb{R}^n) \) belongs to \(L^\infty(\mathbb{R}^n) \) for \(t \neq 0 \).
The bound is
\[
\|U(t, \cdot)\|_{L^\infty(\mathbb{R}^n)} \leq C_\infty (1 + |t|^{-c}) \|U_0\|_{L^1(\mathbb{R}^n)}.
\]

(b) If (H1), (H2) and (H3') are fulfilled, then \(U(t, \cdot) \) belongs to \(L^q(\mathbb{R}^n) \) for
\(q(m,n) < q \leq \infty \). The estimate is
\[
\|U(t, \cdot)\|_{L^q(\mathbb{R}^n)} \leq C_q (|t|^{-c'} + |t|^{-c}) \|U_0\|_{L^1(\mathbb{R}^n)}.
\]

\(C_q \) and \(C_\infty \) are absolute constants.

Remark 1. (i) If \(P \) is homogeneous, the estimates can be trivially improved to
\[
\|U(t, x)\|_{L^q} \leq C_q |t|^{-n/2m} \|U_0\|_{L^1} \quad \text{for } q(m,n) < q \leq \infty.
\]

(ii) Without any change to the bounds and to the proof, these estimates can be
proved with \(W^{s,q} \) norm in place of \(L^q \) norm if \(q > \tilde{q}(m,n,s) \) with
\(\tilde{q}^{-1}(m,n,s) = q^{-1}(m,n) - s/(2m-1)n \).

(iii) Without any change to the bounds and to the proof, (H1) could be replaced
by \(P(\xi) = \rho^{2m}\rho(\omega) + Q(\rho, \omega) \) with a symbol \(Q \in S^{2m-1}_{1,0}(S^{n-1} \times \mathbb{R}_+) \).

The proof of Theorem 1 will follow the lemmas below. We will assume \(m \geq 2 \),
the case \(m = 1 \) can be solved by direct computation.

A. A foliation of \(\mathbb{R}^n \setminus \{P(\xi) \leq a\} \). Let \((\rho, \omega) \in \mathbb{R}_+ \times S^{n-1} \) be the spherical
coordinates in \(\mathbb{R}^n \). In these variables, \(P(\rho, \omega) = \rho^{2m}\rho(\omega) + Q(\rho, \omega) \) with degree of
\(Q \) strictly less than \(2m \). Ellipticity of \(P \) implies \(|\rho(\omega)| \geq c > 0 \) for \(\omega \in S^{n-1} \).
Since \(\rho \) is real valued, we can assume that \(\rho(\omega) \geq c > 0 \) for \(\omega \in S^{n-1} \).

Lemma 1. There exist two positive constants \(a \) and \(b \), and a function \(\rho(s, \omega) \in C^\infty([a, \infty[\times S^{n-1}) \) such that for \((s, \omega) \in]a, \infty[\times S^{n-1} \) we have \(P(\rho(s, \omega), \omega) = s \) and
\(\rho(s, \omega) > b \).

Proof. Let
\[
b' = \sup_{\rho \geq 1} \left((2m\rho^{2m-2}\rho(\omega))^{-1} \partial Q/\partial \rho \right).
\]
Let \(b = \max(b',1) \). For fixed \(\omega \in S^{n-1} \), \(P(\rho, \omega) \) is a strictly increasing function
of the \(\rho \) variable for \(\rho > b \), and goes to infinity when \(\rho \) does. It is then bijective
from \([b, \infty[\) onto \([b, \infty[\). Let \(\rho(s, \omega) \) be the inverse mapping, and let \(a = \sup_{\omega \in S^{n-1}} P(b, \omega) \). \(\rho(s, \omega) \) is then a mapping from \([a, \infty[\times S^{n-1} \) to \(\mathbb{R}_+ \), which
verifies the identity quoted in the lemma. Moreover \(\rho \) is infinitely differentiable as
the implicit function theorem asserts. Actually the mapping \((\rho, \omega) \mapsto (s, \omega) \) is a
\(C^\infty \)-diffeomorphism from the open set \(\mathbb{R}^n \setminus \{P(\xi) < a\} \) onto \([a, \infty[\times S^{n-1} \). Q.E.D.
Using Hörmander’s definition of the symbols classes (Duistermaat [5]), the function just defined has the following behaviour:

Lemma 2.
\[
\rho(s, \omega) = (s/p(\omega))^{1/2m} + \sigma(\omega, s), \quad \text{where } \sigma(\omega, s) \text{ belongs to } S^0(1_0, S^{n-1} \times |a, \infty|).
\]

Proof. If we let \(\partial_s = \partial/\partial s \), \(\partial_\omega = \partial/\partial \omega \) and \(H(\omega, s) = (1+p^{-1}p^{-2m}Q)^{1/2m} \) we have to prove that \(\rho(1 - H) \in S^0(1_0, S^{n-1} \times |a, \infty|) \) and \(1 - H \in S^{1/2m} \). First note that in the identity
\[
(E) \quad s = p \cdot \rho^{2m} + Q,
\]
s goes to infinity whenever \(\rho \) does. Since the degree of \(Q \) is strictly less than \(2m \), we have, uniformly in \(\omega \),
\[
(S1) \quad \rho \sim p^{-1/2m} s^{1/2m} \quad \text{as } s \to \infty.
\]
Then differentiating \((E) \) with respect to \(s \) gives
\[
(S2) \quad \partial \rho/\partial s = O(s^{-1+1/2m}).
\]
By induction on \(\alpha \), we prove the formulas:

\[
(F1) \quad \partial^\alpha s^{2m} = 2m \rho^{2m-1} \partial^\alpha s + \sum_{i \in N_\alpha} C_i \rho_i^{\partial} (\partial s^\rho)^{i_1} \cdot \cdots \cdot (\partial s^{-\partial})^{i_{\alpha-1}},
\]

\[
(F2) \quad \partial^\alpha s Q = \partial \rho Q \cdot \partial^\alpha s + \sum_{j \in M_\alpha} D_j (\partial \rho Q)(\partial s^\rho)^{j_1} \cdot \cdots \cdot (\partial s^{-\partial})^{j_{\alpha-1}}
\]

for any \(\alpha \in N^* \), where
\[
N_\alpha = \left\{ i = (i_0, \ldots, i_{\alpha-1}) \in N^\alpha \text{ with } \sum_{\gamma=0}^{\alpha-1} i_{\gamma} = 2m \text{ and } \sum_{\gamma=1}^{\alpha-1} \gamma i_{\gamma} = \alpha \right\},
\]

\[
M_\alpha = \left\{ j = (k, j_1, \ldots, j_{\alpha-1}) \in N^\alpha \text{ with } k = \sum_{v=1}^{\alpha-1} j_v \text{ and } \sum_{v=1}^{\alpha-1} v j_v = \alpha \right\},
\]

and \(C_i \) and \(D_j \) are absolute constants.

Then, applying \(\partial^\alpha \) to \((E) \) gives inductively
\[
(Sa) \quad \partial^\alpha s \rho = O(s^{-\alpha+1/2m}).
\]
In order to estimate \(s \)-derivatives of \((1 - H) \), we note that by definition
\[
(T1) \quad 1 - H = O(s^{-1/2m}).
\]
By induction on \(\alpha \), we prove
\[
(F3) \quad \partial^\alpha s H = \sum_{K \in L_\alpha} E_K(\omega) H^c \rho^{-2ma-b} \prod_{\gamma=1}^{\alpha} (\partial^\gamma \rho)^{k_\gamma} \prod_{\nu=0}^{\alpha} (\partial^\nu \rho Q)^{l_\nu},
\]
where \(E_K(\omega) \in C^\alpha(S^{n-1}) \) and \(L_\alpha \) is the finite set of elements \((a, b, k, l) \in N \times N \times N^\alpha \times N_\alpha \) satisfying
\[
\alpha \geq a \geq 0; \quad \alpha \geq b \geq 0; \quad \sum_{1}^{\alpha} \gamma k_\gamma = \alpha; \quad \sum_{0}^{\alpha} l_\nu = a; \quad \sum_{1}^{\alpha} k_\gamma - \sum_{0}^{\alpha} (\nu+1) l_\nu \leq b-1.
\]
Then using the previous estimate \((S\alpha)\) on \(\partial^\alpha_s \rho\) leads to
\[(T\alpha) \quad \partial^\alpha_s H = O(s^{-\alpha-1/2m}).\]

In order to prove the same estimates for the derivatives \(\partial^\alpha_s \partial^\beta_{\omega}\), we first prove formulas similar to \((F1)\) and \((F2)\) by induction on \(\beta\):
\[(F'1) \quad \partial^\alpha_s \partial^\beta_{\omega} 2m = 2m p^{2m-1} \partial^\alpha_s \partial^\beta_{\omega} \rho + \sum_{i \in N_\alpha} C_i \prod_{\gamma = 0}^{\alpha} \prod_{\gamma' \leq \beta} (\partial_{\rho}^\gamma \partial_{\omega}^\gamma \rho)^{\gamma, \gamma'},\]
where \(\alpha' < \beta\), \(i_\gamma = \sum_{\gamma'} i_{\gamma', \gamma'}\) for \(\gamma = 0, \ldots, \alpha\) and
\[N_\alpha = \left\{ i = (i_0, \ldots, i_\alpha) \text{ with } \sum_{\gamma} i_\gamma = 2m \text{ and } \sum_{\gamma} \gamma i_\gamma = \alpha \right\};\]

\[(F'2) \quad \partial^\alpha_s \partial^\beta_{\omega} Q = \partial_{\rho}^\gamma Q \cdot \partial^\alpha_s \partial^\beta_{\omega} \rho + \sum_{j \in M_\alpha} D_j (\partial_{\rho}^k \partial_{\omega}^l Q) \prod_{\nu = 0}^{\alpha} \prod_{\nu' \leq \beta} (\partial_{\rho}^\nu \partial_{\omega}^\nu \rho)^{\nu, \nu'},\]
where \(k \leq \alpha\), \(l \leq \beta\), \(\alpha' < \beta\), \(j_\nu = \sum_{\nu'} j_{\nu', \nu'}\) for \(\nu = 0, \ldots, \alpha\) and
\[M_\alpha = \left\{ j = (j_0, \ldots, j_\alpha) \text{ with } \sum_{\nu = 1}^{\alpha} j_\nu = k - j_0 \text{ and } \sum_{\nu = 1}^{\alpha} \nu j_\nu = \alpha \right\}.\]

Applying \(\partial^\alpha_s \partial^\beta_{\omega}\) to equation \((E)\) shows that \(\rho \in S^{1/2m}_{1,0}\):
\[(S'\alpha) \quad \partial^\alpha_s \partial^\beta_{\omega} \rho = O(s^{-\alpha+1/2m}).\]

At last, we show inductively on \(\beta\)
\[(F'3) \quad \partial^\alpha_s \partial^\beta_{\omega} H = \sum E_K (\omega) H^c \prod_{\gamma \leq \alpha} \prod_{\gamma' \leq \beta} (\partial^\gamma_s \partial^\gamma_{\omega} \rho)^{\gamma, \gamma'} \prod_{\nu \leq \alpha} \prod_{\nu' \leq \beta} (\partial^\nu_{\rho} \partial^\nu_{\omega} Q)^{\nu, \nu'},\]
where, if we denote by \(k_\gamma = \sum_{\gamma'} k_{\gamma', \gamma'}\) and \(l_\nu = \sum_{\nu'} l_{\nu', \nu'}\), then \(\sum k_\gamma = \alpha\) and \(\sum k_\gamma + \sum (2m - \nu - 1) l_\nu \leq -1\). This shows, using \((S\alpha)\), that
\[(T'\alpha) \quad \partial^\alpha_s \partial^\beta_{\omega} H = O(s^{-\alpha-1/2m});\]
which means, added to \((T1)\), that \(1 - H \in S^{1/2m}_{1,0}\).

(\text{It is straightforward to check that all the estimates given are uniform in the } \omega\text{-variables.}) \quad \text{Q.E.D.}\

We are going to use this foliation of \(\mathbb{R}^n \setminus \{P(\xi) \leq a\}\) to estimate integrals involved in \(\int e^{itP(\xi)}\).

\text{B. Estimating integrals on } S^{n-1}. \text{ Let } \beta(s) \in C^\infty(\mathbb{R}), \beta \equiv 1 \text{ for } s > a' + 1 \beta \equiv 0 \text{ for } s < a', \text{ where } a' > a \text{ (the constant } a \text{ is defined in Lemma 1). Let}
\begin{align*}
x &= ru, \quad r > 0, \ u \in S^{n-1}, \quad \lambda = rs^{1/2m}, \\
\phi(s, \omega) &= s^{-1/2m} \rho(s, \omega) \langle u, \omega \rangle, \quad a_p(s, \omega) = \beta(s) \rho^{n-1} \frac{\partial \rho}{\partial s}, \\
J_p(s, \lambda) &= \int_{S^{n-1}} e^{i\lambda \phi(s, \omega)} a_p(s, \omega) \, dw.
\end{align*}
The following lemma analyses the phase function ϕ:

Lemma 3. There exists a finite number of open sets $\Omega_i \subset S^{n-1}$ ($i = 1, \ldots, N$) and a constant $d > a$ such that, for $s > d$:

1. On the complementary set of $\bigcup_i \Omega_i$ in S^{n-1}, $\phi(s, \omega)$ has no critical points in the ω-variables and $\|d_\omega \phi\| \geq C > 0$.

2. On each Ω_i, $\phi(s, \omega)$ has only one critical point $\omega^i(s)$, $\omega^i(s) \in \Omega_i \subset \Omega_i$. At that point, $\phi(s, \omega)$ is nondegenerate: the eigenvalues of the Hessian matrix of ϕ in the ω-variables at $(s, \omega^i(s))$ have their modulus bounded from below, i.e. let $\bar{H}(s) = \text{Hess}_\omega(\phi)(s, \omega^i(s)) = d_{\omega\omega}^2(\phi(s, \omega^i(s)))$, then $\|\bar{H}^{-1}(s)\| \leq C'$.

3. The estimates are uniform in s, i.e. Ω_i, Ω_i', C and C' do not depend on $s > d$. $\omega^i \in C^\infty([d, \infty[; S^{n-1})$.

Proof.

\[
\phi(s, \omega) = p^{-1/2m}(\omega)\langle u, \omega \rangle + s^{-1/2m}\sigma(s, \omega)\langle u, \omega \rangle
\]

uniformly on S^{n-1}, and this remains true under ω-differentiation, as shown in Lemma 2.

Hypothesis (H2) asserts that $\phi(\infty, \omega)$ has only nondegenerate critical points. Compactness of S^{n-1} and the fact that such points are isolated imply that this set of points is finite: $(\omega^i(\infty); i = 1, \ldots, N)$. The assumption (H2) asserts the nondegeneracy of $\phi(\infty, \omega)$ at these points: $d_{\omega\omega}^2(\phi(\infty, \omega^i(\infty)))$ invertible. This implies, by the implicit function theorem, the existence of $d' > 0$, O_i a neighborhood of $\omega^i(\infty)$ in S^{n-1} and $\omega^i(s) \in C^\infty([d', \infty[; O_i)$ with

\[
(\omega^i(s) = 0 \iff \omega = \omega^i(s)) \quad \text{for } s > d' \text{ and } \omega \in O_i.
\]

Moreover, invertibility of $d_{\omega\omega}^2(\phi(\infty, \omega^i(\infty)))$ implies the existence of open sets $\Omega_i \subset O_i$, where $d_{\omega\omega}^2(\phi(\infty, \omega))$ is invertible and we have

\[
\omega \in \Omega_i \Rightarrow \|(d_{\omega\omega}^2(\phi(\infty, \omega)))^{-1}\| < C'.
\]

Lemma 2 asserts that

\[
d_{\omega\omega}^2(\phi(s, \omega)) = d_{\omega\omega}^2(\phi(\infty, \omega)) + O(s^{-1/2m})
\]

uniformly for $\omega \in S^{n-1}$. This implies the existence of $d'' > 0$ such that

\[
(s > d'' \text{ and } \omega \in \Omega_i) \Rightarrow \|(d_{\omega\omega}^2(\phi(s, \omega)))^{-1}\| < 2C'.
\]

This is uniform nondegeneracy of the phase function ϕ on $([\bigcup_i \Omega_i] \times [d'', \infty[$. Putting $\omega = \omega^i(s)$ gives

\[
\|\bar{H}^{-1}(s)\| < 2C' \quad \text{for } s > d''.
\]

Let $\Omega_i' \subset \Omega_i$ with $\omega^i(\infty) \in \Omega_i'$. On the complementary set of $\bigcup_i \Omega_i'$ in S^{n-1}, $d_\omega \phi(\infty, \omega) \neq 0$. Therefore there exists $d''' > 0$ such that

\[
(s > d''' \text{ and } \omega \in \bigcap_i C\Omega_i') \Rightarrow \|d_\omega \phi(s, \omega)\| > C.
\]

We take $d = \max(d', d'', d''', a)$, where a is the constant defined in Lemma 1. Q.E.D.

We can therefore apply the Stationary Phase Theorem with parameters (Duistermatt [5]).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma 4. For $s > d$, there exist absolute constants D_l and D'_l such that

(a) for $r > 0$
\[
\left| \frac{\partial^l}{\partial s^l} \left(e^{i\lambda \phi} a_\beta \right) \right| < D_l r^l s^{-1+(n/2m)-(l(2m-1)/2m)},
\]

(b) for $r > 1$
\[
\left| \frac{\partial^l}{\partial s^l} \int_{S^{n-1}} e^{i\lambda \phi} a_\beta \, d\omega \right| < D'_l s^{-1+((n+1)/4m)-(l(2m-1)/2m)} r^{-l+(n-1)/2}.
\]

Proof. The first estimate is straightforward using the Leibniz rule to differentiate $(e^{i\lambda \phi} a_\beta)$, then Lemma 2 gives $\phi \in S^0_{1,0}$, $a_\beta \in S^{-1+n/2m}_{1,0}$ and $\lambda = rs^{1/2m}$ which implies inequality a.

To prove the second estimate, let $\alpha_i(\omega)$ ($i = 0, \ldots, N$) be a C^∞-partition of unity on S^{n-1} fitting the following covering: $(\Omega_0 = \bigcap_i C_\Omega, \Omega_1, \ldots, \Omega_N)$. The integral on S^{n-1} is then a sum of $N+1$ parts.

The integral over Ω_0 is rapidly decreasing when $\lambda \to \infty$, the phase ϕ being uniformly nonstationary (Lemma 3): As shown previously, we prove

\[
(R) \quad \frac{\partial^l}{\partial s^l} \left(e^{i\lambda \phi} a_\beta \right) = r^l e^{i\lambda \phi} a_\beta, l
\]

with $a_\beta, l \in S^{-1+(n/2m)-(l(2m-1)/2m)}_{1,0}$. Then we use the fact that ϕ is nonstationary on Ω_0 to have a first order differential operator L in the ω-variables, with coefficients in $S^0_{0,0}(S^{n-1} \times \mathbb{R}^+)$ satisfying $L\phi = 1$. We use L k-times to integrate by parts in the ω-variables and (R) shows for $\lambda > h_1$ and any $k \in \mathbb{N}$:

\[
\left| \frac{\partial^l}{\partial s^l} \int_{\Omega_0} e^{i\lambda \phi} a_\beta \, d\omega \right| < D_{0,k} r^l \lambda^{-k} s^{-1+(n/2m)-(l(2m-1)/2m)}.
\]

To estimate integrals over Ω_i ($1 \leq i \leq N$) we use the fact that, on Ω_i, the phase is stationary at a single point and nondegenerate at this point uniformly in s (Lemma 3). We apply the Stationary Phase Theorem with Parameters (Duistermaat [5]) and (R) to prove for $\lambda > h_2$:

\[
\left| \frac{\partial^l}{\partial s^l} \int_{\Omega_i} e^{i\lambda \phi} a_\beta \, d\omega \right| < D_l r^l (-n+1)/2 s^{-1+(n+1)/4m-l(2m-1)/2m}.
\]

Taking $k \geq (n-1)/2$, $D = \max(D_l, D_{0,k})$ proves the estimate. Q.E.D.

C. Proof of Theorem 1. Let β be the previously defined function with $a' = d$. Let $\alpha(\xi) = 1 - \beta(P(\xi))$. We have

\[
\mathcal{F}(e^{itP(\xi)}) = \int_{\mathbb{R}^n} e^{i(x,\xi)} e^{itP(\xi)} \alpha(\xi) \, d\xi + \int_0^\infty e^{its} \left(\int_{S^{n-1}} e^{i\lambda \phi} a_\beta \, d\omega \right) \, ds
\]

(a) $I_1(t, x)$ is the Fourier transform of a function in $\mathcal{D}(\mathbb{R}^n)$. It is rapidly decreasing in the x-variables and we have

\[
\forall k \in \mathbb{N}, \quad |I_1(t, x)| < K_k |t|^{k-r-k},
\]

where K_k are absolute constants.

Taking $k = 0$ shows that $I_1(t, x) \in L^{\infty}_{loc}$ uniformly in t.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Taking k an integer, $k > n/q$, shows that $I_1(t, x) \in L^q(\mathbb{R}^n)$.

Let $c' > n/q$, $c' \in \mathbb{N}$. Then

\[(J1) \quad \|I_1(t, \cdot)\|_{L^q(\mathbb{R}^n)} < K(1 + |t|^{c'}).\]

(b) In order to estimate $I_2(t, x)$ locally, we integrate by parts in the s-variable l-times, and use Lemma 4(a) with $l > n/2m - 1$ to prove

\[(J2) \quad I_2(t, x) \in L^\infty_{loc} \text{ with bound less than } K'|t|^{-c} \text{ where } c \text{ is an integer, } c > n/2m - 1.\]

(c) In order to estimate $I_2(t, x)$ for large x, we first integrate by parts l'-times in the s-variable, as previously. Then apply Lemma 4(b) for $l' > (n + 1)/2(2m - 1)$ to obtain

\[(J3) \quad |I_2(t, x)| < K' |t|^{-l'} c', \quad c > n/2m - 1.\]

Assumptions (H3) and $m > 2$ prove that there exists $l' \in \mathbb{N}$ with

\[(n + 1)/2(2m - 1) < l' \leq (n - 1)/2.\]

Taking this value for l' shows that $I_2(t, \cdot) \in L^\infty(\mathbb{R}^n)$ with

\[(J4) \quad \|I_2(t, \cdot)\|_{L^\infty} < K'|t|^{-l'} + K'|t|^{-c}.\]

Moreover, (J3) shows that $I_2(t, x) \in L^q(\mathbb{R}^n)$ for

\[(n - 1)/2 - n/q > l'' > (n + 1)/2(2m - 1).\]

Assumption (H3') implies that such an integer l'' exists for $q > q(m, n)$, and we have

\[(J5) \quad \|I_2(t, \cdot)\|_{L^q} < K'|t|^{-c} + K''|t|^{-l''}.\]

(d) We finally notice that we can choose l' and l'' less or equal to c to rewrite (J1), (J2), (J4) and (J5):

\[
\|\mathcal{F}(e^{itP(\xi)})\|_{L^\infty} < C_\infty (1 + |t|^{-c}), \\
\|\mathcal{F}(e^{itP(\xi)})\|_{L^q} < C_q (|t|^{c'} + |t|^{-c}). \quad \text{ Q.E.D.}
\]

REMARK. This computation shows that $I_2(t, x)$ is rapidly decreasing as $|t| \to \infty$. But in the general case, $I_1(t, x)$ does not decay as $|t| \to \infty$. Under an additional assumption, this will be the case locally.

COROLLARY. **Local decay.** If (H1), (H2) and (H3) are fulfilled and if we have

\[(H4) \quad \text{for } \|\xi\| < a, \text{ } P(\xi) \text{ is nondegenerate at its critical points,}
\quad \text{then, if } B \text{ is a bounded set in } \mathbb{R}^n, \text{ we have for large } |t| \]

\[
\forall x \in B \quad |\mathcal{F}(e^{itP(\xi)})(x)| < C|t|^{-n/2}. \quad \text{ Q.E.D.}
\]

PROOF. Using Lemma 4(a), we prove the rapid decay of $I_2(t, x)$ for bounded x. To estimate $I_1(t, x)$, we consider it as an oscillatory integral on a compact set with phase $P(\xi)$ and the parameter $|t| \to \infty$. (H4) enables us to apply the Stationary Phase Theorem which gives an estimate by $|t|^{-n/2}$. Q.E.D.
3. \((L^p, L^p')\) and \((L^p, L^q)\) estimates \((1 \leq p \leq 2)\). Let \((e^{itP(D)}U_0)(x)\) be the solution \(U(t, x)\) of the Cauchy problem (**) . We have the following \((L^p, L^p')\) and \((L^p, L^q)\) estimates for \(e^{itP(D)}\).

THEOREM 2. Assume \(P\) satisfies (H1), (H2) and (H3). Then for any \(t \neq 0\) and any \(p, 1 \leq p \leq 2\), \(e^{itP(D)}\) maps continuously \(L^p(\mathbb{R}^n)\) into \(L^{p'}(\mathbb{R}^n)\) and we have the estimate

\[
\|e^{itP(D)}\|_{\mathcal{L}(L^p, L^{p'})} < C(1 + |t|^{-c_0}),
\]

where \(\theta = p^{-1} - p'^{-1}, \ p^{-1} + p'^{-1} = 1, c\) is an integer, \(c > n/2m - 1\), and \(C\) does not depend on \(t\).

THEOREM 2'. Assume \(P\) satisfies (H1), (H2) and (H3'). If \(1 < p \leq 2\) and \(q(m, n, p) < q < p_1\), then \(e^{itP(D)}\) continuously maps \(L^p(\mathbb{R}^n)\) into \(L^q(\mathbb{R}^n)\) for \(t \neq 0\), and we have the estimate

\[
\|e^{itP(D)}\|_{\mathcal{L}(L^p, L^q)} < C(|t|^{c_0} + |t|^{-c_0}).
\]

Here
\[
\theta = p^{-1} - p'^{-1},
\]
\(c\) is an integer with \(c > n/2m - 1\),
\(c'\) is an integer with \(c' > n(p' - q)/q(p' - 2)\), and
\((q(m, n, p))^{-1} = p'^{-1} + \theta(q(m, n))^{-1}\), where \(q(m, n)\) is given in Theorem 1.

PROOF. Since \(e^{itP(\xi)}\) is of modulus one, \(e^{itP(D)}\) is continuous in \(L^2(\mathbb{R}^n)\) with norm equal to one. Theorem 1 gives the continuity of \(e^{itP(D)}\) from \(L^1(\mathbb{R}^n)\) to \(L^q(\mathbb{R}^n)\), \(q(m, n) < q < \infty\). Then the Riesz Thorin interpolation theorem (Stein [11], Lions and Peetre [9]) proves the estimate. Q.E.D.

REMARK 2. With \(p\) and \(q\) fulfilling the same assumptions, if \(P(\xi)\) is homogeneous, the estimates can be improved to

\[
\|e^{itP(D)}\|_{\mathcal{L}(L^p, L^q)} < C_{p, q} t^{-(n/2m)(1/p - 1/q)}.
\]

We now come to \((L^p, L^p')\) and \((L^p, L^q)\) estimates of the resolvent operator of \(iP(D)\):

THEOREM 3. Assume \(P\) satisfies (H1), (H2) and (H3). Then for \(\lambda \in \mathbb{C}\) with \(\text{Re} \lambda \neq 0\), and for \(p, 2c/c + 1 < p \leq 2\), we have

\[
\|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^p, L^{p'})} < C|\text{Re} \lambda|^{-1} (1 + |\text{Re} \lambda|^{c_0}),
\]

where \(\theta = p^{-1} - p'^{-1}, c\) is an integer, \(c > n/2m - 1\), and \(C\) does not depend on \(\lambda\).

THEOREM 3'. Assume \(P\) satisfies (H1), (H2) and (H3'). Then for \(\lambda \in \mathbb{C}\), \(\text{Re} \lambda \neq 0\), for \(p, 2c/c + 1 < p \leq 2\), and for \(q, q(m, n, p) < q < p'\), we have

\[
\|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^p, L^q)} < C|\text{Re} \lambda|^{-1} (|\text{Re} \lambda|^{-c_0} + |\text{Re} \lambda|^{c_0}),
\]

where the parameters involved have the same values as in Theorem 2'.

REMARK 3. If \(2m > n + 1\), then \(c = 1\) and these estimates are valid for any \(p, 1 < p \leq 2\).

PROOF. With the same notation as before, we consider for \(\text{Re} \lambda > 0\)

\[
F(\lambda, x) = \int_0^\infty e^{-\lambda t} U(t, x) \, dt.
\]
For $U_0 \in L^p(\mathbb{R}^n)$ with $2 \geq p > 2c/c + 1$, the integral is convergent in L^q for any q, $q(m,n,p) < q \leq p'$, in view of Theorems 2 and 2'. This leads to

$$\|F(\lambda, x)\|_{L^q(\mathbb{R}^n)} \leq C|\text{Re} \lambda|^{-1}(|\text{Re} \lambda|^{-c'} + |\text{Re} \lambda|^{c'})\|U_0\|_{L^p(\mathbb{R}^n)}.$$

Then we take $U_0 \in S(\mathbb{R}^n)$, we compute $iP(D)F(\lambda, x)$ by passing the operator under the integral sign, and then integrate by parts to prove

$$F(\lambda, x) = (\lambda - iP(D))^{-1}U_0.$$

A density argument ends the proof for $\text{Re} \lambda > 0$.

For $\text{Re} \lambda < 0$, the same proof is valid with

$$F(\lambda, x) = - \int_{-\infty}^{0} e^{\lambda t}U(t, x) dt. \quad \text{Q.E.D.}$$

REMARK 4. For homogeneous P we can take $1 < p \leq 2$, and the bound can be improved to

$$\| (\lambda - iP(D))^{-1} \|_{L^p(L^q)} < C|\text{Re} \lambda|^{-1+(n/2m)(1/p-1/q)}.$$

4. (L^p, L^p) estimates and smooth distribution groups $(1 < p < \infty)$.

A. $e^{\lambda P(D)}$ as a distribution with values in L^p. In order to prove (L^p, L^p) estimates for $e^{\lambda P(D)}$, we first recall that $e^{\lambda P(D)}$ is not a continuous mapping from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ unless $p = 2$, or $t = 0$, or $P(D)$ is a first order differential operator (Hörmander [7] and Brenner [4]). We will prove that for any $\phi \in \mathcal{D}(\mathbb{R})$ (the Schwartz space), the following operator is continuous in $L^p(\mathbb{R}^n)$:

$$\mathcal{G}(\phi) = \int_{-\infty}^{+\infty} \phi(t)e^{itP(D)} dt.$$

(We will denote it by $\mathcal{G}_p(\phi)$ when it will operate in $L^p(\mathbb{R}^n)$.) So we consider $e^{itP(D)}$ as a distribution in the t-variable with values in $L^p(\mathbb{R}^n)$, and estimate its order.

The only hypothesis we will assume for $P(D)$ throughout §4 will be

(HP) $P(D)$ is a real valued, elliptic polynomial of order $2m$, $P(\xi) \neq 0$ for $\xi \neq 0$.

REMARK. This last assumption about the zeros of $P(\xi)$ is unnecessary: one can always add to any real elliptic polynomial a constant c such that $P(\xi) + c$ fulfills (HP). Adding this constant changes in an obvious way the subsequent estimates. We adopt it in order to simplify notations.

DEFINITION 1. For $l \in \mathbb{N}$, let p_l be the following norm on $\mathcal{D}(\mathbb{R})$:

$$\forall \phi \in \mathcal{D}(\mathbb{R}) \quad p_l(\phi) = \sum_{0 < k < l} \left| \frac{d^k \phi}{dt^k} \right|_{L^1(\mathbb{R})}.$$

Let T_k denote the completion of $\mathcal{D}(\mathbb{R})$ for p_k, and T_{∞} the completion of $\mathcal{D}(\mathbb{R})$ for the family $(p_l)_{l \in \mathbb{N}}$. We will denote by T_k^+ and p_k^+ the same objects with $\mathcal{D}(\mathbb{R})$ replaced by $\mathcal{D}(\mathbb{R}^+)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
THEOREM 4. Let $P(D)$ satisfy (HP). Then for any p, $1 < p < \infty$, and any $k \in \mathbb{N}$, $k > n/2$, \mathcal{G}_p is a continuous linear mapping from T_k to $L^p(\mathbb{R}^n)$.

PROOF. For any $U_0 \in S(\mathbb{R}^n)$, the Cauchy problem (**) has a unique solution $U(t, x) = (e^{itP(D)}U_0)(x)$ which belongs to $S(\mathbb{R}^n)$ for any fixed t. Let $\phi(t) \in \mathcal{D}(\mathbb{R})$. The following computation is obvious in $S(\mathbb{R}^n)$:

$$
\mathcal{G}(\phi)U_0 = \int_{-\infty}^{\infty} \phi(t)e^{itP(D)}U_0 dt = \int_{-\infty}^{\infty} \phi(t)\mathcal{F}(e^{itP(\xi)}\mathcal{F}U_0(\xi)) dt
$$

$$
= \mathcal{F}\left(\int_{-\infty}^{\infty} \phi(t)e^{itP(\xi)} dt \cdot \mathcal{F}U_0(\xi)\right) = \mathcal{F}(\hat{\phi}(P(\xi)) \cdot \mathcal{F}U_0(\xi)),
$$

where $\hat{\phi}$ denotes the inverse Fourier transform of ϕ in the variable t. To prove Proposition 1, we have to prove that $\hat{\phi}(P(\xi)) \in M_p$, the space of Fourier multipliers in $L^p(\mathbb{R}^n)$, and the M_p norm of $\hat{\phi}(P(\xi))$ is bounded by the T_k norm of ϕ. A density argument will conclude the proof. We will use a sufficient condition for a function to belong to M_p given by Stein [11]: for every differential monomial ∂^α_ξ with $|\alpha| \leq k$ ($k > n/2$), $|\partial^\alpha_\xi \hat{\phi}(P(\xi))|$ must be bounded by $p_{|\alpha|}(\phi)\|\xi\|^{-|\alpha|}$. This is done inductively. For $|\alpha| = 0$, we have

$$
\forall \phi \in \mathcal{D}(\mathbb{R}), \forall \xi \in \mathbb{R}^n, \ |\hat{\phi}(P(\xi))| \leq \|\phi\|_{L^\infty} \leq \|\phi\|_{L^1} = p_0(\phi).
$$

Assume that for any $\beta \in \mathbb{N}^n$ with $|\beta| < |\alpha|$, we have the following estimate for the derivative of order β:

$$
\forall \phi \in \mathcal{D}(\mathbb{R}), \forall \xi \in \mathbb{R}^n, \ |\partial^\beta_\xi \hat{\phi}(P(\xi))| \leq C p_{|\beta|}(\phi)\|\xi\|^{-|\beta|}.
$$

Then, with a little abuse of notation, and using the classical formulas of derivatives of Fourier transforms and Fourier transforms of derivatives (taken at the point $P(\xi)$), we compute the derivative of order α:

$$
\partial^\alpha_\xi \hat{\phi}(P(\xi)) = \partial^\alpha_\xi^{-1}[i(\partial_\xi P) \cdot \hat{\phi}(P(\xi))]
$$

$$
= \partial^\alpha_\xi^{-1}[(P^{-1} \cdot \partial_\xi P) \cdot (\hat{\phi} + t\hat{\phi}')(P(\xi))]
$$

$$
= \sum C^\dagger_{\alpha-1}(P^{-1} \cdot \partial_\xi P) \cdot \partial^\alpha_\xi^{-1-j}(\hat{\phi} + t\hat{\phi}')(P(\xi))
$$

by the Leibniz rule. Using the assumed estimates we have

$$
|\partial^\alpha_\xi \hat{\phi}(P(\xi))| \leq \sum C^\dagger_{\alpha-1} |\partial^\alpha_\xi(P^{-1} \cdot \partial_\xi P)| \cdot p_{|\alpha|-j-1}(\phi + t\phi') \cdot \|\xi\|^{-|\alpha|-j}
$$

$$
\leq \|\xi\|^{-|\alpha|} \sum C^\dagger_{\alpha-1} \sup_{\xi \in \mathbb{R}^n} (\|\xi\|^{j+1} \cdot |\partial^\alpha_\xi(P^{-1} \cdot \partial_\xi P)|) \cdot p_{|\alpha|-j-1}(\phi + t\phi').
$$

Boundedness of $\|\xi\|^{j+1} \cdot |\partial^\alpha_\xi(P^{-1} \cdot \partial_\xi P)|$ follows from (HP). Using the inequality $p_{|\alpha|-1}(t\phi') < D_{\gamma} p_{|\gamma|}(\phi) < D_{\gamma} p_{|\alpha|}(\phi)$ for $|\alpha| \geq |\gamma|$ we have

$$
|\partial^\alpha_\xi \hat{\phi}(P(\xi))| \leq C' p_{|\alpha|}(\phi)\|\xi\|^{-|\alpha|}. \quad \text{Q.E.D.}
$$

REMARK 5. Following [2], if P is homogeneous, \mathcal{G}_p is a continuous mapping from T_k to $L^p(\mathbb{R}^n)$ if $k > n|1/p - 1/2|$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
COROLLARY. Assume $P(D)$ satisfies (HP). Let $iP_p(D)$ be the densely defined, closed operator in $L^p(\mathbb{R}^n)$ defined as $iP(D)$ with domain $W^{2m,p}(\mathbb{R}^n)$. For any $\lambda \in \mathbb{C}$, $\Re \lambda \neq 0$, $(\lambda - iP_p(D))$ has a bounded inverse in $L^p(\mathbb{R}^n)$, $1 < p < \infty$, and we have the estimate

$$
\|(\lambda - iP_p(D))^{-1}\|_{L^p(\mathbb{R}^n)} < C|\Re \lambda|^{-1} |\lambda(\Re \lambda)^{-1} |^{(n+3)/(p-1/2)}.
$$

PROOF. We first notice that for any $k \in \mathbb{N}$ and $\lambda \in \mathbb{C}$ with $\Re \lambda > 0$, $Y(t)e^{-\lambda t}$ belongs to T_k with its p_k norm bounded by $C_k|\lambda|^{k} |\Re \lambda|^{-k-1}$. So, for any positive ε, $\mathcal{G}(Y(t)e^{-\lambda t})$ extends to a bounded operator in $L^{1+\varepsilon}(\mathbb{R}^n)$ with norm less than $C_k|\lambda|^k |\Re \lambda|^{-k-1}$, $k > n/2$.

On the other hand, $\mathcal{G}(Y(t)e^{-\lambda t})$ is obviously bounded in $L^2(\mathbb{R}^n)$ with norm less than $|\Re \lambda|^{-1}$. Interpolation between $L^{1+\varepsilon}$ and L^2 gives $\mathcal{G}(Y(t)e^{-\lambda t})$ bounded in $L^p(\mathbb{R}^n)$, $1 + \varepsilon \leq p \leq 2$, with norm less than

$$
|\Re \lambda|^{-1} |\lambda(\Re \lambda)^{-1}|^{(E(n/2)+1)(1+\varepsilon)(p-1-p'\varepsilon)/(1-\varepsilon)}
$$

which is always less than $|\Re \lambda|^{-1} |\lambda(\Re \lambda)^{-1}|^{(n+3)(p^{-1}-2^{-1})}$. An adjointness argument gives the same result for $1 + \varepsilon \leq p' \leq 2$. On $S(R^m)$, we have

$$(\lambda - iP(D))\mathcal{G}(Y(t)e^{-\lambda t}) = \mathcal{G}(Y(t)e^{-\lambda t})(\lambda - iP(D)) = I.$$

This proves that $\mathcal{G}_p(Y(t)e^{-\lambda t})$ is the inverse operator of the operator $(\lambda - iP(D))$ in $L^p(\mathbb{R}^n)$ with domain

$$\{U_0 \in L^p(\mathbb{R}^n) \text{ with } P(D)U_0 \in L^p(\mathbb{R}^n)\}.$$

But this is exactly $W^{2m,p}(\mathbb{R}^n)$, following the fact that

$$\partial^\alpha_y U_0 = \mathcal{F}(\xi^\alpha \mathcal{F}(U_0)) = \mathcal{F}(\xi^\alpha P(\xi)^{-1} \mathcal{F}(P(D)U_0))$$

and using hypothesis (HP) and the multipliers theorem of Stein [11] quoted above to prove that $\xi^\alpha P(\xi)^{-1}$ is a multiplier of $L^p(\mathbb{R}^n)$ if $|\alpha| \leq 2m$. For $\Re \lambda < 0$, the same proof is valid with $\mathcal{G}(-Y(-t)e^{\lambda t})$ in place of $\mathcal{G}(Y(t)e^{-\lambda t})$.

REMARK. For p close to 1 or to infinity, and small values of n, a better estimate could be proved directly using Theorem 4 in $L^p(\mathbb{R}^n)$ to get

$$
\|(\lambda - iP(D))^{-1}\|_{L^p(\mathbb{R}^n)} < C|\Re \lambda|^{-1} |\lambda(\Re \lambda)^{-1}|^{k} \quad \text{with } k > n/2.
$$

In order to study the case $iP(D) + V(x)$, we will need an inverse result. We now introduce the abstract framework which will allow us to prove it.

C. Smooth distribution semigroups on a Banach space. Smooth distribution groups are a special case of distribution semigroups introduced by Lions [8]. They turn out to be the right tool to analyse differential operators in $L^p(\mathbb{R}^n)$. A particular class of these distributions was studied by us in [2]. We will not give those proofs here which are slight modifications of proofs given in [2].

DEFINITION 2. Let X be a Banach space. A smooth distribution semigroup of order $k \in \mathbb{N}$ and exponential growth $\delta > 0$ is a linear mapping \mathcal{G}_+ from $D(\mathbb{R}^+)$ to $\mathcal{L}(X)$ such that

1. $e^{-\delta t} \mathcal{G}_+$ extends continuously to T_k^+: $\forall \phi \in D(\mathbb{R}^+), \|\mathcal{G}_+(e^{-\delta t} \phi)\|_{\mathcal{L}(X)} < C \rho_k(\phi)$.
2. $\forall \phi \in T_k^+, \forall \psi \in T_k^+, \mathcal{G}_+(\phi \ast \psi) = \mathcal{G}_+(\phi) \mathcal{G}_+(\psi)$.
3. There exists an everywhere dense subspace D of X such that for every $x \in D$ the distribution $\mathcal{G}_+ \otimes x$ is a continuous function on \mathbb{R}_+, with value x at the origin.
NOTATION. The class of smooth distribution semigroups of order \(k \) and exponential growth \(\delta \) will be denoted by \(\sigma_+(k, \delta) \).

REMARK 6. (a) (i) makes sense because \(T_k^+ \) is an algebra for the (additive) convolution.

(b) We notice that for any \(\phi \in \mathcal{D}(\mathbb{R}_+) \), \((s^{-1}\phi(s^{-1} \cdot))_{s > 0} \) is a bounded subset of \(T_k^+ \). The Ascoli theorem then shows that \(e^{-\delta t} \mathcal{G}_+(s^{-1}\phi(s^{-1} \cdot)) \) converges strongly to the identity. This implies

\[
N = \bigcap_{\phi \in T_k^+} \ker \mathcal{G}_+(\phi) = \{0\},
\]

\[
R = \bigcup_{\phi \in T_k^+} \text{Im} \mathcal{G}_+(\phi) \text{ is everywhere dense in } X.
\]

Let \(\mathcal{G}_+(-\delta') \) be the operator defined on \(R \) by

\[
\mathcal{G}_+(-\delta')\mathcal{G}_+(\phi)x = \mathcal{G}_+(-\phi')x \text{ for } x \in X, \phi \in T_k^+.
\]

The properties quoted in Remark 6 show that this definition is consistent and that \(\mathcal{G}_+(-\delta') \) is closable.

DEFINITION 3. The infinitesimal generator of \(\mathcal{G}_+ \in \sigma_+(k, \delta) \) is the closure of \(\mathcal{G}_+(-\delta') \).

Spectral properties of generators of smooth distribution semigroups are summarized in the following:

PROPOSITION 1. If \(A \) generates \(\mathcal{G}_+ \in \sigma_+(k, \delta) \) on a Banach space \(X \), then \(A \) is densely defined, closed, and for any \(\lambda \in \mathbb{C} \), \(\Re \lambda > \delta \), \(\lambda \) belongs to the resolvent set of \(A \). For any \(\mu \in \mathbb{C} \) with \(\Re \mu > 0 \), we have

\[
\| (\lambda I - A)^{-\mu} \|_{\mathcal{L}(X)} < C(\mu) |\lambda - \delta|^k (\Re \lambda - \delta)^{-k - \Re \mu},
\]

where \(C(\mu) = C\Gamma(\Re \mu)|\Gamma(\mu)|^{-1} |\mu|^k \).

PROOF. We will sketch it for \(\mu \) a positive integer. The proof for \(\mu \in \mathbb{C} \) is a slight modification of that given in [2]. We first notice that for \(\Re \lambda > \delta \), \(Y(t)t^{\mu-1}e^{-(\lambda-\delta)t} \) belongs to \(T_k^+ \) and it is easy to see that

\[
T(\mu)(\lambda I - A)^{-\mu} = \mathcal{G}_+(Y(t)t^{\mu-1}e^{-\lambda t}).
\]

Then, \(e^{-\delta t} \mathcal{G}_+ \) being bounded on \(T_k^+ \) gives the estimate if we compute

\[
p_k(Y(t)t^{\mu-1}e^{-(\lambda-\delta)t}) < C|\mu|^k |\lambda - \delta|^k (\Re \lambda - \delta)^{-k - \mu}. \quad \text{Q.E.D.}
\]

The inverse result is the following Hille-Yosida type estimate.

PROPOSITION 2. Let \(A \) be a closed, densely defined operator in a Banach space \(X \). If for any \(\lambda \in \mathbb{C} \), \(\Re \lambda > \delta \), \(\lambda \) belongs to the resolvent set of \(A \) and we have the estimate

\[
\| (\lambda I - A)^{-1} \|_{\mathcal{L}(X)} < C|\lambda - \delta|^k (\Re \lambda - \delta)^{-k - 1},
\]

then \(A \) generates a smooth distribution semigroup \(\mathcal{G}_+ \) of order \(k + 2 \) and exponential growth \(\delta \).

PROOF. For any \(\phi \in \mathcal{D}(\mathbb{R}_+) \) let \(\tilde{\phi} \) denote its Laplace transform

\[
\tilde{\phi}(\lambda) = \int_0^{\infty} e^{\lambda t} \phi(t) \, dt.
\]
Let Γ(c) be the line Re λ = c positively oriented in the direction of increasing Im λ. We define \mathcal{G}_+ by

$$\mathcal{G}_+(\phi) = \frac{1}{2\pi i} \int_{\Gamma(c+\epsilon)} \hat{\phi}(\lambda) (\lambda - A)^{-1} d\lambda.$$

This integral is obviously convergent in $\mathcal{L}(X)$. Standard holomorphic calculus shows point (i) of Definition 2. The resolvent identity to order $k + 2$ shows that $D(A^{k+2})$ can be taken for the dense subspace of point (ii) of Definition 2. It is straightforward to check that A is the infinitesimal generator of \mathcal{G}_+. It remains to show that $e^{-\delta t} \mathcal{G}_+$ extends continuously to T_k^+. Using Fubini’s Theorem, one has

$$\mathcal{G}_+(e^{-\delta t}\phi) = \frac{1}{2\pi i} \int_{\Gamma(c)} \hat{\phi}(\lambda) (\lambda + \delta - A)^{-1} d\lambda$$

$$= \int_0^\infty t^{k+2} \phi^{(k+2)}(t) \left(\frac{1}{2\pi i} \int_{\Gamma(c)} \left(t \lambda^{-k-2} e^{\lambda t} (\lambda + \delta - A)^{-1} d\lambda \right) dt \right) dt$$

$$= \int_0^\infty t^{k+2} \phi^{(k+2)}(t) \left(\frac{1}{2\pi i} \int_{\Gamma(c)} \lambda^{-k-2} e^{\lambda (t^{-1} \lambda + \delta - A)^{-1} t^{-1} d\lambda} \right) dt,$$

and we only need to show that the norm of the path integral in $\mathcal{L}(X)$ is finite and does not depend on t. We change the integration path to $\Gamma(1)$ and use the estimate assumed on the resolvent operator to end the proof. Q.E.D.

We have the following regularity result for $\mathcal{G}_+ \in \sigma_+(k, \delta)$ on $D(A^k)$. Its proof is similar to that given in [2].

PROPOSITION 3. Let $\mathcal{G}_+ \in \sigma_+(k, \delta)$ on a Banach space X. Let A be its infinitesimal generator. For any $x \in D(A^k)$, the distribution $\mathcal{G}_+ \otimes x$ is a function on \mathbb{R}^+, denoted by $e^{tA}x$, and we have the estimate

$$\forall t \geq 0, \quad \|e^{tA}x\| \leq (\|x\| + \|A^kx\|)(1 + tk)e^{\delta t}.$$

DEFINITION 4. Let X be a Banach space and A a linear operator in X. A generates a smooth distribution group \mathcal{G} of order k and exponential growth δ (in short $\mathcal{G} \in \sigma(k, \delta)$) if A and $-A$ generate elements of $\sigma_+(k, \delta)$.

D. Constant coefficients evolution equations in $L^p(\mathbb{R}^n)$ (1 < p < ∞).

THEOREM 5. Let $P(D)$ be a differential operator satisfying (HP) and \mathcal{G}_p the distribution associated to $e^{tP(D)}$ in $L^p(\mathbb{R}^n)$. \mathcal{G}_p is a smooth distribution group of order $k > n/2$ and exponential growth 0 in $L^p(\mathbb{R}^n)$. Its infinitesimal generator is $iP(D)$ with domain $W^{2m,p}(\mathbb{R}^n)$.

PROOF. This is a rewriting of Theorem 4. The only thing to be computed is the infinitesimal generator A_p of \mathcal{G}_p. Following the proof of the corollary of Theorem 4, it is enough to show that the domain of A_p is $\{U_0 \in L^p(\mathbb{R}^n) \text{ with } iP(D)U_0 \in L^p(\mathbb{R}^n)\}$ and that, on R, we have $A_p = iP(D)$.

For $\phi \in T_k^+$ and $U_0 \in L^p(\mathbb{R}^n)$ we have

$$A_p \mathcal{G}_p(\phi)U_0 = \mathcal{G}_p(-\phi')U_0 = \mathcal{F}(-\hat{\phi}'(P(\xi))\mathcal{F}U_0)$$

$$= \mathcal{F}(iP(\xi)\hat{\phi}(P(\xi))\mathcal{F}U_0) = iP(D)\mathcal{G}_p(\phi)U_0.$$
If \(U_0 \in L^p(\mathbb{R}^n) \) and \(iP(D)U_0 \in L^p(\mathbb{R}^n) \), let \(\phi \in \mathcal{D}(\mathbb{R}_+) \) with \(\int \phi = 1 \) and let \(\phi_s = s^{-1}\phi(s^{-1}) \). Then \(\mathcal{G}_p(\phi_s)U_0 \) converges to \(U_0 \) in \(L^p(\mathbb{R}^n) \) because \(\phi_s(\mathcal{G}_p(\xi)) \) converges to one in \(M_p \), applying Stein [11], and \(\mathcal{G}_p(-\phi_s')U_0 = \mathcal{G}_p(\phi_s)(iP(D)U_0) \) converges in \(L^p(\mathbb{R}^n) \) to \(iP(D)U_0 \). So \(D(A_p) \supset W^{2m,p}(\mathbb{R}^n) \). For the inverse inclusion we just note that \(\mathcal{G}_p(-\phi_s')U_0 \) converges to \(iP(D)U_0 \) in \(\mathcal{D}'(\mathbb{R}^n) \) if \(U_0 \in D(A_p) \). So \(iP(D)U_0 \in L^p(\mathbb{R}^n) \). Q.E.D.

REMARK 7. (a) Using the corollary of Theorem 4 and Proposition 2, we can improve the order of \(\mathcal{G}_p \) in \(L^p(\mathbb{R}^n) \) to \(k > 2 + (n + 3)|1/p - 1/2| \).

(b) Theorem 5 and Proposition 1 improve the estimate of the corollary of Theorem 4. They give an estimate for the powers of the resolvent of \(iP_p(D) \).

(c) If \(P \) is homogeneous, the order of \(\mathcal{G}_p \) can be improved to \(k > n|1/p - 1/2| \).

PROPOSITION 4. For \(U_0 \in W^{2mk,p}(\mathbb{R}^n), k > n/2, \) the solution of the Cauchy problem (**) is a continuous function in the \(t \)-variable with values in \(L^p(\mathbb{R}^n) \). We have the estimate

\[
\|e^{itP(D)}U_0\|_{L^p(\mathbb{R}^n)} < C(1 + |t|^k)\|U_0\|_{W^{2mk,p}(\mathbb{R}^n)}.
\]

PROOF. This is a translation of Proposition 3 using Theorem 5.

5. The Cauchy problem \(\partial_t - iP(D) - V(x) \): \((L^p, L^p) \) estimates. We consider the Cauchy problem

\[
(*) \quad \partial U/\partial t = (iP(D) + V(x))U; \quad U(0, x) = U_0(x) \in L^p(\mathbb{R}^n).
\]

We are now in position to prove that under the subsequent assumptions on \(P \) and \(V \), the solution is a distribution in the \(t \)-variable with values in \(L^p(\mathbb{R}^n) \). The order of this distribution is any integer \(k \) with \(k > (n + 3)|p^{-1} - 2^{-1}| + 4 \). This will imply a precise estimate in \(\mathcal{L}(L^p(\mathbb{R}^n)) \) of the resolvent operator of \(iP(D) + V(x) \).

Here \(iP(D) + V(x) \) will mean this differential operator with domain \(\{U_0 \in W^{2mk,p}(\mathbb{R}^n)\} \) with \(VU_0 \in L^p(\mathbb{R}^n) \).

Let \(c \) be an integer with \(c > n/2m - 1 \).

Let \(q(m, n) = n(2m - 1)/((m - 1)(n - 3) - 2) \).

Let \(q'(m, n) \) be the conjugate index \(q(m, n)^{-1} + (q'(m, n))^{-1} = 1 \).

Let \(q = q'(m, n) \).

THEOREM 6. Assume that \((i) \ 2c/(c + 1) < p < 2c/(c - 1) \).

(\(ii \)) \(P(D) \) satisfies (H1), (H2), (H3') and (HP).

(\(iii \)) \(V = V_1 + V_2 \) with \(V_1 \in L^{\alpha}(\mathbb{R}^n), \ r_1^{-1} = |p^{-1} - p'^{-1}|, \ V_2 \in L^{\gamma^2}(\mathbb{R}^n), \ \tilde{q}^{-1}|p^{-1} - p'^{-1}| < r_2^{-1} \leq |p^{-1} - p'^{-1}| \).

Then for any integer \(k \), \(k > (n + 3)|p^{-1} - 2^{-1}| + 2 \), and some \(\delta > 0 \), \(iP(D) + V(x) \) generates a smooth distribution group in \(L^p(\mathbb{R}^n) \) of order \(k \) and exponential growth \(\delta \).

PROOF. (a) First we note that \(iP(D) + V \) and \(-(iP(D) + V) \) satisfy the same assumptions. So we just have to prove that \(iP(D) + V \) generates a smooth distribution semigroup of order \(k \) and exponential growth \(\delta \).

(b) For \(p \leq 2 \), we write the resolvent operator, whenever it exists, in the form

\[
(\lambda - (iP(D) + V))^{-1} = (I - V(\lambda - iP(D))^{-1})^{-1} (\lambda - iP(D))^{-1}.
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
By the Neumann series, \((I - V(A - iP(D))^{-1})^{-1}\) will exist and be bounded if
\[\|V(A - iP(D))^{-1}\|_{L^p} < 1.\]
But
\[
\|V(A - iP(D))^{-1}\|_{L^p} \leq \|V_1\|_{L^{p'}_1} \|V_1\|_{L^{p'}_1} \|\lambda - iP(D)\|_{L^{p'}}^{-1} \|A - iP(D)\|_{L^p}^{-1}
+ \|V_2\|_{L^{p'}_2} \|\lambda - iP(D)\|_{L^{p'}}^{-1} \|A - iP(D)\|_{L^p}^{-1}
\leq C \|V_1\|_{L^{p_1}} |\Re \lambda|^{-1} (1 + |\Re \lambda|^\theta)
+ C \|V_2\|_{L^{p_2}} |\Re \lambda|^{-1} (|\Re \lambda|^{-\epsilon} + |\Re \lambda|^\epsilon)
\]
by Theorems 3 and 3'. Following these theorems, we must have
\[2c/(c + 1) < p \leq 2 \text{ and } r_1 = p^{-1} - p_1^{-1},\]
\[q(m, n, p) < s_2 \leq p' \text{ and } r_2^{-1} = p^{-1} - s_2^{-1} \text{ so } p^{-1} - (q(m, n, p))^{-1} < r_2^{-1} \leq p^{-1} - p_1^{-1},\]
\[\theta = p^{-1} - p_1^{-1},\]
\[c \text{ is an integer with } c > n/2m - 1, \text{ and}\]
\[c' \text{ is an integer with } c' > n(p' - s_2)/s_2(p' - 2).\]
Finally we have for \(|\Re \lambda| > 1\)
\[\|V(A - iP(D))^{-1}\|_{L^p} < C(\|V_1\|_{L^{p_1}} + \|V_2\|_{L^{p_2}}) (1 + |\Re \lambda|^\theta) |\Re \lambda|^{-1}.\]
This must be strictly less than one for large \(|\Re \lambda|\): we must add the condition \(c\theta < 1\), and this is true when \(p > 2c/(c + 1)\). Thus there exists some positive \(\delta\) such that for \(|\Re \lambda| > \delta\),
\[\|V(A - iP(D))^{-1}\|_{L^p} < 1/2.\]
In this case, we have the following estimate for the resolvent by the corollary of Theorem 4:
\[\|\lambda - (iP(D) + V)\|_{L^p} < 2C |\Re \lambda|^{-1} |\lambda|^{-1} |\lambda|^{-1} (|n + 3|p^{-1} - 2^{-1}|).\]
This implies, by the abstract Proposition 2, that \(iP(D) + V\) generates a smooth distribution semigroup of order any integer \(k\) with \(k > (n + 3)(p^{-1} - 2^{-1}) + 2\) and of exponential growth \(\delta\). All encountered assumptions are the assumptions given in the statement of the theorem for \(p \leq 2\), but the assumption on \(r_2\). The condition \(p^{-1} - (q(m, n, p))^{-1} < r_2^{-1}\) is equivalent to \((p^{-1} - p_1^{-1})\bar{q}^{-1} < r_2^{-1}\) by definition of \(q(m, n, p)\)
\[p^{-1} - (q(m, n, p))^{-1} = p^{-1} - p_1^{-1} - \theta(q(m, n))^{-1}
= (p^{-1} - p_1^{-1})(1 - (q(m, n))^{-1}) = (p^{-1} - p_1^{-1})\bar{q}^{-1}.\]
(c) For \(p \geq 2\), we use an adjointness argument to obtain
\[\|\lambda - (iP(D) + V)\|_{L^p} = \|\lambda - (iP(D) + \bar{V})\|_{L^{p'}}.\]
By the previous computation, this leads to the same estimate as in the case \(p < 2\).
But the conditions are to be written on \(p'\) in place of \(p\): \(p' > 2c/(c + 1)\) is equivalent to \(p < 2c/(c - 1)\).
The conditions on \(r_1\) and \(r_2\) remain unchanged: they depend on \(|p^{-1} - p_1^{-1}|.\)
The condition on \(c'\) is changed, but we only need \(c' \geq 0\), which remains the case. Q.E.D.

Remark. If \(V_2 = 0\), then assumption (H3') in Theorem 1 can be replaced by (H3).

Remark. If \(P(D)\) is homogeneous, then under the assumptions of Theorem 6,
\((iP(D) + V)\) generates a smooth distribution group in \(L^p(\mathbb{R}^n)\) of order any integer \(k\) with \(k > n|1/p - 1/2| + 2\) and of exponential growth \(\delta\).
COROLLARY 1. Assume P, V and p satisfy the assumptions of Theorem 6. Then there exists $\delta > 0$ such that for any λ with $|\text{Re}\, \lambda| > \delta$ and any μ, $\text{Re}\, \mu > 1$, we have the estimate

$$\|(\lambda - (iP(D) + V))^{-\mu}\|_{L^p(R^n)} < C(\mu)|\text{Re}\, \lambda - \varepsilon\delta|^{-\text{Re}\, \mu}(|\lambda - \varepsilon\delta| |\text{Re}\, \lambda - \varepsilon\delta|^{-1})^{k},$$

where ε is the sign of $\text{Re}\, \lambda$, k is any integer with $k > 2 + (n + 3)|p^{-1} - 2^{-1}|$ and $C(\mu) = C\Gamma(\text{Re}\, \mu)|\Gamma(\mu)|^{-1}|\mu|^k$.

PROOF. It is a consequence of Theorem 6 and Proposition 1.

COROLLARY 2. Assume P, V and p satisfy the assumptions of Theorem 6. Let k be any integer with $k > (n + 3)|p^{-1} - 2^{-1}| + 2$. Assume $U_0 \in L^p(R^n)$ with $(iP(D) + V)^kU_0 \in L^p(R^n)$. Then the solution $U(t, x)$ of the Cauchy problem (\#) with Cauchy data U_0 is a continuous function of the t-variable with values in $L^p(R^n)$ and for any $t \in R$ we have the estimate

$$\|U(t, \cdot)\|_{L^p(R^n)} \leq C(\|U_0\|_{L^p} + \|(iP(D) + V)^kU_0\|_{L^p})(1 + |t|^k)e^{\delta t}.$$

PROOF. It is a consequence of Theorem 6 and Proposition 3.

REFERENCES