Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

$L^ p$ estimates for Schrödinger evolution equations
HTML articles powered by AMS MathViewer

by M. Balabane and H. A. Emamirad PDF
Trans. Amer. Math. Soc. 292 (1985), 357-373 Request permission

Abstract:

We prove that for Cauchy data in ${L^1}({{\mathbf {R}}^n})$, the solution of a Schrödinger evolution equation with constant coefficients of order $2m$ is uniformly bounded for $t \ne 0$, with bound $(1 + |t{|^{ - c}})$, where $c$ is an integer, $c > n/2m - 1$. Moreover it belongs to ${L^q}({{\mathbf {R}}^n})$ if $q > q(m,n)$, with its ${L^p}$ norm bounded by $(|t{|^{c’}} + |t{|^{ - c}})$, where $c’$ is an integer, $c’ > n/q$. A maximal local decay result is proved. Interpolating between ${L^1}$ and ${L^2}$, we derive $({L^p},{L^q})$ estimates. On the other hand, we prove that for Cauchy data in ${L^p}({{\mathbf {R}}^n})$, such a Cauchy problem is well posed as a distribution in the $t$-variable with values in ${L^p}({{\mathbf {R}}^n})$, and we compute the order of the distribution. We apply these two results to the study of Schrödinger equations with potential in ${L^p}({{\mathbf {R}}^n})$. We give an estimate of the resolvent operator in that case, and prove an asymptotic boundedness for the solution when the Cauchy data belongs to a subspace of ${L^p}({{\mathbf {R}}^n})$.
References
    M. Balabane and H. A. Emami-Rad, Pré-publications mathématiques n$^{o}$ 22, Université Paris-Nord, 1981.
  • M. Balabane and H. A. Emamirad, Smooth distribution group and Schrödinger equation in $L^{p}(\textbf {R}^{n})$, J. Math. Anal. Appl. 70 (1979), no. 1, 61–71. MR 541059, DOI 10.1016/0022-247X(79)90075-1
  • —, Pseudo differential parabolic systems in ${L^p}({{\mathbf {R}}^n})$, Contributions to Non-Linear P.D.E., Research Notes in Mathematics, no. 89, Pitman, New York, 1983, pp. 16-30.
  • Claude Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. École Norm. Sup. (4) 3 (1970), 185–233 (French). MR 274925, DOI 10.24033/asens.1190
  • Philip Brenner, The Cauchy problem for systems in $L_{p}$ and $L_{p,\alpha }$, Ark. Mat. 11 (1973), 75–101. MR 324249, DOI 10.1007/BF02388508
  • J. J. Duistermaat, Fourier integral operators, Courant Institute of Mathematical Sciences, New York University, New York, 1973. Translated from Dutch notes of a course given at Nijmegen University, February 1970 to December 1971. MR 0451313
  • J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
  • Lars Hörmander, Estimates for translation invariant operators in $L^{p}$ spaces, Acta Math. 104 (1960), 93–140. MR 121655, DOI 10.1007/BF02547187
  • J.-L. Lions, Les semi groupes distributions, Portugal. Math. 19 (1960), 141–164 (French). MR 143045
  • J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68 (French). MR 165343, DOI 10.1007/BF02684796
  • Juan C. Peral, $L^{p}$ estimates for the wave equation, J. Functional Analysis 36 (1980), no. 1, 114–145. MR 568979, DOI 10.1016/0022-1236(80)90110-X
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • E. T. Whittaker and J. N. Watson, A course of modern analysis, Cambridge Univ. Press, London, 1969.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K22, 35J10
  • Retrieve articles in all journals with MSC: 35K22, 35J10
Additional Information
  • © Copyright 1985 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 292 (1985), 357-373
  • MSC: Primary 35K22; Secondary 35J10
  • DOI: https://doi.org/10.1090/S0002-9947-1985-0805968-3
  • MathSciNet review: 805968