Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Compensated compactness and general systems of conservation laws


Author: Ronald J. DiPerna
Journal: Trans. Amer. Math. Soc. 292 (1985), 383-420
MSC: Primary 35L65; Secondary 76L05
DOI: https://doi.org/10.1090/S0002-9947-1985-0808729-4
MathSciNet review: 808729
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We outline a general program and present some new results dealing with oscillations in weakly convergent solution sequences to systems of conservation laws. The analysis employs the Young measure and the Tartar-Murat theory of compensated compactness and deals with systems of hyperbolic and elliptic type.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Ball, On the calculus of variations and sequentially weakly continuous maps, Lecture Notes in Math. vol. 564, Springer-Verlag, 1976. MR 0637229 (58:30605)
  • [2] -, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337-403. MR 0475169 (57:14788)
  • [3] J. M. Ball, J. C. Currie and P. J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Funct. Anal. 41 (1981), 135-175. MR 615159 (83f:49031)
  • [4] B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear functionals, Lecture Notes in Math., Springer-Verlag, 1982. MR 658130 (84f:49020)
  • [5] R. J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1979), 137-188. MR 523630 (80i:35119)
  • [6] -, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 82 (1983), 27-70. MR 684413 (84k:35091)
  • [7] -, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 1-30. MR 719807 (85i:35118)
  • [8] -, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), 223-270. MR 775191 (86g:35121)
  • [9] J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Amer. Math. Soc. Memoir 101 (1970). MR 0265767 (42:676)
  • [10] B. Keyfitz, Solutions with shocks, an example of an $ {L^1}$-contractive semigroup, Comm. Pure Appl. Math. 24 (1971), 125-132. MR 0271545 (42:6428)
  • [11] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566. MR 0093653 (20:176)
  • [12] -, Shock waves and entropy, Contributions to Nonlinear Functional Analysis (E. A. Zarantonello, ed.), Academic Press, 1971. MR 0366576 (51:2823)
  • [13] F. Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa 5 (1978), 489-507. MR 506997 (80h:46043a)
  • [14] -, Compacité par compensation: Condition necessaire et suffisante de continuité faible sous une hypotheses de rang constant, Ann. Scuola Norm. Sup. Pisa 8 (1981), 69-102. MR 616901 (82h:46051)
  • [15] L. Tartar, Compensated compactness and applications to partial differential equations, Research Notes in Math., Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4 (R. J. Knops, ed.), Pitman Press, 1979. MR 584398 (81m:35014)
  • [16] -, The compensated compactness method applied to systems of conservation laws, Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed), NATO ASI Series, C. Reidel, 1983. MR 725524 (85e:35079)
  • [17] -, Solutions oscillantes des equations de Carleman, Séminaire Goulaouic-Meyer-Schwarz, January 1983.
  • [18] A. I. Vol'pert, The spaces $ BV$ and quasilinear equations, Math. USSR-Sb. 2 (1967), 257-267.
  • [19] D. Serre, private communication.
  • [20] N. Kruzkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 127-243.
  • [21] C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Springer, Berlin, 1966.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L65, 76L05

Retrieve articles in all journals with MSC: 35L65, 76L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0808729-4
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society