Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Joint continuity of division of smooth functions. II. The distance to a Whitney stratified set from a transversal submanifold


Author: Mark Alan Mostow
Journal: Trans. Amer. Math. Soc. 292 (1985), 585-594
MSC: Primary 58C25
DOI: https://doi.org/10.1090/S0002-9947-1985-0808739-7
MathSciNet review: 808739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a closed set in $ {{\mathbf{R}}^m}$, and let a $ {C^1}$ Whitney stratification of $ S$ be given. (Actually, only Whitney (a)-regularity is needed.) Let $ f:{{\mathbf{R}}^n} \to {{\mathbf{R}}^m}$ be a $ {C^1}$ map transversal to all the strata. Assume that the image of $ f$ intersects $ S$. Then for each compact set $ K$ in $ {{\mathbf{R}}^n}$, the Euclidean distances $ \rho (x,{f^{ - 1}}(S))$ and $ \rho (f(x),S)$, for $ x$ in $ K$, are bounded by constant multiples of each other. The bounding constants can be chosen to work for all maps $ g$ which are close enough to $ f$ in a $ {C^1}$ sense on a neighborhood of $ K$. This result is used in part I (written jointly with S. Shnider) to prove a result on the joint continuity of the division of smooth functions [MS].


References [Enhancements On Off] (What's this?)

  • [Fel] E. A. Feldman, The geometry of immersions. I, Trans. Amer. Math. Soc. 120 (1965), 185-224. MR 0185602 (32:3065)
  • [GG] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, New York, 1973, 1980. MR 0341518 (49:6269)
  • [GWPL] C. G. Gibson et al., Topological stability of smooth mappings, Lecture Notes in Math., vol. 552, Springer-Verlag, New York, 1976. MR 0436203 (55:9151)
  • [Hur] W. Hurewicz, Lectures on ordinary differential equations, M. I. T. Press, 1958. MR 0090703 (19:855a)
  • [Kuo] T.-C. Kuo, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I, Lecture Notes in Math., vol. 192, Springer-Verlag, New York, 1971, pp. 141-149. MR 0279333 (43:5056)
  • [Łoj] S. Łojasiewicz, Sur le problème de la division, Studia Math. 18 (1959), 87-136. MR 0107168 (21:5893)
  • [Mal] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, London, 1966. MR 0212575 (35:3446)
  • [MS] M. Mostow and S. Shnider, Joint continuity of division of smooth functions. I: Uniform Lojasiewicz estimates, Trans. Amer. Math. Soc. 292 (1985), 573-583. MR 808738 (87f:58018a)
  • [Tro] D. J. A. Trotman, Stability of transversality to a stratification implies Whitney (a)-regularity, Invent. Math. 50 (1979), 273-277. MR 520929 (80b:58015)
  • [Wh1] H. Whitney, Local properties of analytic varieties in differential and combinatorial topology (S. S. Cairns, ed.), Princeton Univ. Press, Princeton, N. J., 1965, pp. 205-244. MR 0188486 (32:5924)
  • [Wh2] -, Tangents to an analytic variety, Ann. of Math. (2) 81 (1965), 496-549. MR 0192520 (33:745)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58C25

Retrieve articles in all journals with MSC: 58C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0808739-7
Keywords: Whitney stratification, transversality, Whitney (a)-regularity, regular separation
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society