Polyhedral resolutions of algebraic varieties
Author:
James A. Carlson
Journal:
Trans. Amer. Math. Soc. 292 (1985), 595-612
MSC:
Primary 14E15; Secondary 14C30, 32C45
DOI:
https://doi.org/10.1090/S0002-9947-1985-0808740-3
MathSciNet review:
808740
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We give a method for constructing relatively small smooth simplicial resolutions of singular projective algebraic varieties. For varieties of dimension , at most
applications of the basic process yields a resolution of combinatorial dimension at most
. The object so obtained may be used to compute the mixed Hodge stucture of the underlying variety.
- [C] James A. Carlson, Extensions of mixed Hodge structures, Jounées de Géométrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979 (Arnaud Beauville, ed.), Sijthoff & Noordhoff, Alphen den Rijn, The Netherlands, 1980, pp. 107-127. MR 605338 (82g:14013)
- [D] Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Etude Sci. Publ. Math. No. 44, 1974, pp. 5-77. MR 0498552 (58:16653b)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 14E15, 14C30, 32C45
Retrieve articles in all journals with MSC: 14E15, 14C30, 32C45
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1985-0808740-3
Article copyright:
© Copyright 1985
American Mathematical Society