Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An irreducible representation of a symmetric star algebra is bounded


Author: Subhash J. Bhatt
Journal: Trans. Amer. Math. Soc. 292 (1985), 645-652
MSC: Primary 46K10; Secondary 47D40
DOI: https://doi.org/10.1090/S0002-9947-1985-0808743-9
MathSciNet review: 808743
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A $ {\ast}$-algebra $ A$ is called symmetric if $ (1 + {x^{\ast}}x)$ is invertible in $ A$ for each $ x$ in $ A$. An irreducible hermitian representation of a symmetric $ {\ast}$-algebra $ A$ maps $ A$ onto an algebra of bounded operators.


References [Enhancements On Off] (What's this?)

  • [1] G. R. Allan, On a class of locally convex algebras, Proc. London Math. Soc. (3) 17 (1967), 91-114. MR 0205102 (34:4937)
  • [2] T. M. Apostol, Mathematical analysis, Addision-Wesley, Reading, Mass., 1971.
  • [3] D. Arnel and J. P. Jurzak, Topological aspects of algebras of unbounded operators, J. Funct. Anal. 24 (1977), 397-424. MR 0435874 (55:8825)
  • [4] S. J. Bhatt, A note on generalized $ {B^{\ast}}$-algebra. I; II, J. Indian Math. Soc. 43 (1979), 253-257; ibid. 44 (1980), 285-290.
  • [5] -, Quotient bounded elements in locally convex algebras, J. Austral. Math Soc. Ser. A 33 (1982), 102-113. MR 662365 (83h:46062)
  • [6] -, Irreducible representations of a class of unbounded operator algebras, Sardar Patel Univ. Math. Tech. Rep. 9, 1983; Japanese J. Math. (to appear).
  • [7] J. Dixmier, $ {C^{\ast}}$-algebras, North-Holland, Amsterdam, 1977. MR 0458185 (56:16388)
  • [8] P. G. Dixon, Generalized $ {B^{\ast}}$-algebras, Proc. London Math. Soc. (3) 21 (1970), 693-715. MR 0278079 (43:3811)
  • [9] -, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53-69. MR 0291821 (45:911)
  • [10] S. Gudder and W. Scrugg, Unbounded representations of $ ^{\ast}$ algebras, Pacific J. Math. 70 (1977), 369-382. MR 0482269 (58:2345)
  • [11] A. Inoue, Unbounded representations of symmetric $ ^{\ast}$ algebras, J. Math. Soc. Japan 29 (1977), 219-232. MR 0438136 (55:11055)
  • [12] -, On a class of unbounded operator algebras. I; II; III, Pacific J. Math. 65 (1976), 77-96; ibid. 66 (1976), 411-431; ibid. 69 (1977), 105-115.
  • [13] -, Unbounded generalizations of left Hilbert algebras. I; II, J. Funct. Anal. 34 (1979), 339-362; ibid. 35 (1980), 230-250. MR 556260 (82c:47051a)
  • [14] F. Mathot, On the decomposition of states of some $ ^{\ast}$ algebras, Pacific J. Math. 90 (1980), 411-424. MR 600640 (82c:46072)
  • [15] R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124. MR 0283580 (44:811)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K10, 47D40

Retrieve articles in all journals with MSC: 46K10, 47D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0808743-9
Keywords: Symmetric $ {\ast}$-algebra, unbounded representations
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society