Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The fifth and seventh order mock theta functions


Author: George E. Andrews
Journal: Trans. Amer. Math. Soc. 293 (1986), 113-134
MSC: Primary 33A35; Secondary 05A19, 11P05
DOI: https://doi.org/10.1090/S0002-9947-1986-0814916-2
MathSciNet review: 814916
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The theory of Bailey chains is extended to yield identities for Hecke type modular forms and related generalizations. The extended results allow us to produce Hecke type series for the fifth and seventh order mock theta functions. New results on the generating function for sums of three squares also follow, and a new proof that every integer is the sum of three triangular numbers is given.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Andrews, On basic hypergeometric series, mock theta functions and partitions. I, Quart. J. Math. Oxford Ser. 17 (1966), 64-80. MR 0193282 (33:1502)
  • [2] -, On basic hypergeometric series, mock theta functions and partitions. II, Quart. J. Math. Oxford Ser. 17 (1966), 132-143. MR 0200489 (34:382)
  • [3] -, On the theorems of Watson and Dragonette for Ramanujan's mock-theta functions, Amer. J. Math. 88 (1966), 454-490. MR 0200258 (34:157)
  • [4] -, The theory of partitions, Encyclopedia of Math. and Its Applications, Vol. 2 (G.-C. Rota, ed.), Addison-Wesley, Reading, Mass., 1976. MR 0557013 (58:27738)
  • [5] -, An introduction to Ramanujan's ``lost'' notebook, Amer. Math. Monthly 86 (1979), 89-108. MR 520571 (80e:01018)
  • [6] -, Connection coefficient problems and partitions, Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, R. I., 1979, pp. 1-24. MR 525316 (80c:33004)
  • [7] -, Hecke modular forms and the Kac-Petersen identities, Trans. Amer. Math. Soc. 283 (1984), 451-458. MR 737878 (85e:11031)
  • [8] -, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984), 267-283. MR 757501 (86c:11084)
  • [9] W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50(1949), 1-10. MR 0025025 (9:585b)
  • [10] D. M. Bressoud, Hecke modular forms and $ q$-Hermite polynomials (to appear). MR 822391 (87j:11035)
  • [11] L. A. Dragonette, Some asymptotic formulae for the mock theta series of Ramanujan, Trans. Amer. Math. Soc. 72 (1952), 474-500. MR 0049927 (14:248g)
  • [12] E. Hecke, Über einen Zusammenhang zwischen elliptischen Modulfunktionen und indefiniten quadratischen Formen, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959, pp. 418-427. MR 749754 (86a:01049)
  • [13] V. G. Kac and D. H. Peterson, Affine Lie algebras and Hecke modular forms, Bull. Amer. Math. Soc. (N.S.) 3 (1980), 1057-1061. MR 585190 (82b:10028)
  • [14] S. Ramanujan, Collected papers, Cambridge Univ. Press, London, 1927; Reprinted, Chelsea, New York, 1962. MR 2280844
  • [15] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343.
  • [16] D. Shanks, A short proof of an identity of Euler, Proc. Amer. Math. Soc. 2 (1951), 747-749. MR 0043808 (13:321h)
  • [17] -, Two theorems of Gauss, Pacific J. Math. 8 (1958), 609-612. MR 0099555 (20:5994)
  • [18] L. J. Slater, Generalized hypergeometric functions, Cambridge Univ. Press, London, 1966. MR 0201688 (34:1570)
  • [19] G. N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc. 11 (1936), 55-80. MR 1862757
  • [20] -, The mock theta functions. II, Proc. London Math. Soc. (2) 42 (1937), 272-304.
  • [21] -, A note on Spence's logarithm transcendant, Quart. J. Math. Oxford Ser. 8 (1937), 39-42.
  • [22] D. B. Sears, On the transformation theory of basic hypergeometric functions, Proc. London Math. Soc. (2) 53 (1951), 158-180. MR 0041981 (13:33d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 33A35, 05A19, 11P05

Retrieve articles in all journals with MSC: 33A35, 05A19, 11P05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0814916-2
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society