Multivariate rational approximation

Authors:
Ronald A. DeVore and Xiang Ming Yu

Journal:
Trans. Amer. Math. Soc. **293** (1986), 161-169

MSC:
Primary 41A20; Secondary 41A63

DOI:
https://doi.org/10.1090/S0002-9947-1986-0814918-6

MathSciNet review:
814918

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We estimate the error in approximating a function by rational functions of degree in the norm of . Among other things, we prove that if is in the Sobolev space and if , then can be approximated by rational functions of degree to an order .

**[1]**Yu. A. Brudnyĭ,*Rational approximation and exotic Lipschitz spaces*, Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979) Academic Press, New York-London, 1980, pp. 25–30. MR**588168****[2]**M. Š. Birman and M. Z. Solomjak,*Piecewise polynomial approximations of functions of classes 𝑊_{𝑝}^{𝛼}*, Mat. Sb. (N.S.)**73 (115)**(1967), 331–355 (Russian). MR**0217487****[3]**Ronald A. DeVore,*Maximal functions and their application to rational approximation*, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 143–155. MR**729327****[4]**Ronald A. DeVore and Karl Scherer (eds.),*Quantitative approximation*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**588164****[5]**Ronald A. DeVore and Robert C. Sharpley,*Maximal functions measuring smoothness*, Mem. Amer. Math. Soc.**47**(1984), no. 293, viii+115. MR**727820**, https://doi.org/10.1090/memo/0293**[6]**G. G. Lorentz,*Approximation of functions*, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR**0213785****[7]**D. J. Newman,*Rational approximation to |𝑥|*, Michigan Math. J.**11**(1964), 11–14. MR**0171113****[8]**V. A. Popov,*Uniform rational approximation of the class 𝑉ᵣ and its applications*, Acta Math. Acad. Sci. Hungar.**29**(1977), no. 1-2, 119–129. MR**0435679**, https://doi.org/10.1007/BF01896474**[9]**V. A. Popov,*On the connection between rational uniform approximation and polynomial 𝐿_{𝑝} approximation of functions*, Quantitative approximation (Proc. Internat. Sympos., Bonn, 1979) Academic Press, New York-London, 1980, pp. 267–277. MR**588187****[10]**S. L. Sobolev,*Applications of functional analysis in mathematical physics*, Transl. Math. Monos., vol. 7, Amer. Math. Soc., Providence, R. I., 1963.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A20,
41A63

Retrieve articles in all journals with MSC: 41A20, 41A63

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0814918-6

Keywords:
Multivariate rational approximation,
error estimates in ,
Sobolev spaces

Article copyright:
© Copyright 1986
American Mathematical Society