Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximation theorems for Nash mappings and Nash manifolds


Author: Masahiro Shiota
Journal: Trans. Amer. Math. Soc. 293 (1986), 319-337
MSC: Primary 58A07
DOI: https://doi.org/10.1090/S0002-9947-1986-0814925-3
MathSciNet review: 814925
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ 0 \leq r < \infty $. A Nash function on $ {\mathbf{R}^n}$ is a $ {C^r}$ function whose graph is semialgebraic. It is shown that a $ {C^r}$ Nash function is approximated by a $ {C^\omega}$ Nash one in a strong topology defined in the same way as the usual topology on the space $ \mathcal{S}$ of rapidly decreasing $ {C^\infty}$ functions. A $ {C^r}$ Nash manifold in $ {\mathbf{R}^n}$ is a semialgebraic $ {C^r}$ manifold. We also prove that a $ {C^r}$ Nash manifold for $ r \ge 1$ is approximated by a $ {C^\omega}$ Nash manifold, from which we can classify all $ {C^r}$ Nash manifolds by $ {C^r}$ Nash diffeomorphisms.


References [Enhancements On Off] (What's this?)

  • [1] D. R. Chillingworth and J. Hubbard, A note on nonrigid Nash structures, Bull. Amer. Math. Soc. 77 (1971), 429-431. MR 0276229 (43:1976)
  • [2] G. Efroymson, The extension theorem for Nash functions, Lecture Notes in Math., vol. 959, Springer-Verlag, Berlin and New York, 1982, pp. 343-357. MR 683141 (84i:58002)
  • [3] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin and New York, 1969. MR 0248435 (40:1687)
  • [4] S. Łojasiewicz, Triangulations of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964), 449-474. MR 0173265 (30:3478)
  • [5] -, Ensembles semi-analytiques, Inst. Hautes Études Sci., 1965.
  • [6] T. Mostowski, Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), no. 2, 245-266. MR 0412180 (54:307)
  • [7] J. F. Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421. MR 0050928 (14:403b)
  • [8] R. Palais, Equivariant real algebraic differential topology, Part I, Smoothness categories and Nash manifolds, Notes, Brandeis Univ., 1972.
  • [9] M. Shiota, Classification of Nash manifolds, Ann. Inst. Fourier (Grenoble) 33 (1983), 209-232. MR 723954 (85b:58004)
  • [10] -, Piecewise linearization of real analytic functions, Publ. Res. Inst. Math. Sci. Kyoto Univ. 20 (1984), 727-792. MR 762952 (86f:32008)
  • [11] -, Abstract Nash manifolds, Proc. Amer. Math. Soc. (to appear). MR 813829 (87e:58003)
  • [12] M. Shiota and M. Yokoi, Triangulations of subanalytic sets and locally subanalytic manifolds, Trans. Amer. Math. Soc. 286 (1984), 727-750. MR 760983 (86m:32014)
  • [13] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. MR 0039258 (12:522b)
  • [14] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. MR 0212575 (35:3446)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58A07

Retrieve articles in all journals with MSC: 58A07


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0814925-3
Keywords: Nash manifold, real algebraic geometry, semialgebraic set
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society