Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Long time asymptotics of the Korteweg-de Vries equation


Author: Stephanos Venakides
Journal: Trans. Amer. Math. Soc. 293 (1986), 411-419
MSC: Primary 35B40; Secondary 35Q20
MathSciNet review: 814929
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the long time evolution of the solution to the Kortewegde Vries equation with initial data $ \upsilon (x)$ which satisfy

$\displaystyle \lim \limits_{x \to - \infty } \upsilon (x) = - 1,\qquad \lim \limits_{x \to + \infty } \upsilon (x) = 0$

We show that as $ t \to \infty $ the step emits a wavetrain of solitons which asymptotically have twice the amplitude of the initial step. We derive a lower bound of the number of solitons separated at time $ t$ for $ t$ large.

References [Enhancements On Off] (What's this?)

  • [1] E. Ja. Hruslov, Asymptotics of the solution of the Cauchy problem for the Korteweg-de Vries equation with initial data of step type, Math USSR-Sb. 28 (1976).
  • [2] A. Cohen and T. Kappeler, Scattering and inverse scattering for step-like potentials, The Schrödinger Equation, 1983, Preprint.
  • [3] Amy Cohen, Solutions of the Korteweg-de Vries equation with steplike initial profile, Comm. Partial Differential Equations 9 (1984), no. 8, 751–806. MR 748367, 10.1080/03605308408820347
  • [4] V. Buslaev and V. Fomin, An inverse scattering problem for the one-dimensional Schrödinger equation on the entire axis, Vestnik Leningrad. Univ. 17 (1962), no. 1, 56–64 (Russian, with English summary). MR 0139371
  • [5] Stephanos Venakides, The zero dispersion limit of the Korteweg-de Vries equation for initial potentials with nontrivial reflection coefficient, Comm. Pure Appl. Math. 38 (1985), no. 2, 125–155. MR 780069, 10.1002/cpa.3160380202
  • [6] I, Kay and H. E. Moses, J. Appl. Phys. 27 (1956), 1503-1508.
  • [7] Peter D. Lax and C. David Levermore, The small dispersion limit of the Korteweg-de Vries equation. I, Comm. Pure Appl. Math. 36 (1983), no. 3, 253–290. MR 697466, 10.1002/cpa.3160360302
  • [8] H. P. McKean, Theta functions, solitons, and singular curves, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 237–254. MR 535596

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35B40, 35Q20

Retrieve articles in all journals with MSC: 35B40, 35Q20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0814929-0
Article copyright: © Copyright 1986 American Mathematical Society