Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Symmetric semicontinuity implies continuity


Author: Jaromir Uher
Journal: Trans. Amer. Math. Soc. 293 (1986), 421-429
MSC: Primary 26A15; Secondary 26A24
DOI: https://doi.org/10.1090/S0002-9947-1986-0814930-7
MathSciNet review: 814930
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper shows that, for any function, symmetric semicontinuity on a measurable set $ E$ implies continuity a.e. in $ E$ and, similarly, that symmetric semicontinuity on a set residual in $ R$ implies continuity on a set residual in $ R$. These propositions are used to prove more precise versions of the fundamental connections between symmetric and ordinary differentiability.


References [Enhancements On Off] (What's this?)

  • [1] C. L. Belna, Symmetric continuity of real functions, Proc. Amer. Math. Soc. 87 (1983), 99-102. MR 677241 (84g:26001)
  • [2] Z. Charzynski, Sur les fonctions dont la derivée symetrique est partout finie, Fund. Math. 21 (1933), 214-225.
  • [3] H. Fried, Über die symmetrische Stetigkeit von Funktionen, Fund. Math. 29 (1937), 134-137.
  • [4] A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), 212-279.
  • [5] S. P. Ponomarev, O simetričeski něpreryvnych funkcijach, Mat. Zametki 1 (1967), 385-390. MR 0209412 (35:310)
  • [6] D. Preiss, A note on symmetrically continuous functions, Časopis Pěst. Mat. 96 (1971), 262-264. MR 0306411 (46:5537)
  • [7] S. Saks, Théorie de l'intégrale, PWN, Warsaw, 1933.
  • [8] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964), 247-283. MR 0158955 (28:2176)
  • [9] J. Uher, Symmetrically differentiable functions are differentiable almost everywhere, Real Anal. Exchange 8 (1982-83), 253-261. MR 694513 (84f:26009)
  • [10] W. H. Young, La symétrie de structure des fonctions de variables réelles, Bull. Sci. Math. 52 (1928), 265-280.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A15, 26A24

Retrieve articles in all journals with MSC: 26A15, 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0814930-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society