Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Gauss map for surfaces. II. The Euclidean case


Author: Joel L. Weiner
Journal: Trans. Amer. Math. Soc. 293 (1986), 447-466
MSC: Primary 53A07; Secondary 53A05
DOI: https://doi.org/10.1090/S0002-9947-1986-0816303-X
MathSciNet review: 816303
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study smooth maps $ t:\;M \to G_2^c$ of a Riemann surface $ M$ into the Grassmannian $ G_2^c$ of oriented $ 2$-planes in $ {{\mathbf{E}}^{2 + c}}$ and determine necessary and sufficient conditons on $ t$ in order that it be the Gauss map of a conformal immersion $ X:\;M \to {{\mathbf{E}}^{2 + c}}$. We sometimes view $ t$ as an oriented riemannian vector bundle; it is a subbundle of $ {\mathbf{E}}_M^{2 + c}$, the trivial bundle over $ M$ with fibre $ {{\mathbf{E}}^{2 + c}}$. The necessary and sufficient conditions obtained for simply connected $ M$ involve the curvatures of $ t$ and $ {t^ \bot }$, the orthogonal complement of $ t$ in $ {\mathbf{E}}_M^{2 + c}$, as well as certain components of the tension of $ t$ viewed as a map $ t:\;M \to {S^C}(1)$, where $ {S^C}(1)$ is a unit sphere of dimension $ C$ that contains $ G_2^c$ as a submanifold in a natural fashion. If $ t$ satisfies a particular necessary condition, then the results take two different forms depending on whether or not $ t$ is the Gauss map of a conformal minimal immersion. The case $ t:\;M \to G_2^2$ is also studied in some additional detail.


References [Enhancements On Off] (What's this?)

  • [1] S. S. Chern and E. Spanier, A theorem on orientable surfaces in four-dimensional space, Comment. Math. Helv. 25 (1951), 1-5. MR 0044883 (13:492d)
  • [2] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68. MR 495450 (82b:58033)
  • [3] R. C. Gunning, Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, N.J., 1966. MR 0207977 (34:7789)
  • [4] D. A. Hoffman and R. Osserman, The area of the generalized Gaussian image and the stability of minimal surfaces in $ {S^n}$ and $ {{\mathbf{R}}^n}$, Math. Ann. 260 (1982), 437-452. MR 670192 (84a:53006)
  • [5] -, The Gauss map of surfaces in $ {{\mathbf{R}}^n}$, J. Differential Geometry 18 (1983), 733-754. MR 730925 (85i:53059)
  • [6] -, The Gauss map for surfaces in $ {{\mathbf{R}}^3}$ and $ {{\mathbf{R}}^4}$, Proc. London Math. Soc. (3) 50 (1985), 27-56.
  • [7] D. A. Hoffman, R. Osserman and R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in $ {{\mathbf{R}}^3}$ and $ {{\mathbf{R}}^4}$, Comment. Math. Helv. 57 (1982), 519-531. MR 694604 (84f:53004)
  • [8] K. Kenmotsu, Weierstrauss formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89-99. MR 552581 (81c:53005b)
  • [9] H. B. Lawson, Jr., Lectures on minimal submanifolds. Vol. 1, Publish or Perish, Inc., Boston, 1980.
  • [10] M. Obata, The Gauss map of immersions of Riemannian manifolds in space of constant curvature, J. Differential Geometry 2 (1968), 217-1223. MR 0234388 (38:2705)
  • [11] E. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573. MR 0259768 (41:4400)
  • [12] J. L. Weiner, The Gauss map for surfaces in $ 4$-space, Math. Ann. 269 (1984), 541-560. MR 766013 (86g:53069)
  • [13] -, The Gauss map for surfaces: Part 1: The affine case, Trans. Amer. Math. Soc. 293 (1986), 431-446. MR 816302 (87e:53010a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53A07, 53A05

Retrieve articles in all journals with MSC: 53A07, 53A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0816303-X
Keywords: Riemann surface, Gauss map of a conformal immersion, Grassmannian, normal bundle, tension
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society