Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly


Authors: A. L. Levin and D. S. Lubinsky
Journal: Trans. Amer. Math. Soc. 293 (1986), 533-545
MSC: Primary 30E10; Secondary 41A20
DOI: https://doi.org/10.1090/S0002-9947-1986-0816308-9
MathSciNet review: 816308
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f = \Sigma _{j = 0}^\infty {a_j}{z^j}$ be an entire function which satisfies

$\displaystyle \vert{a_{j - 1}}a{ _{j + 1}}/a_j^2\vert \leqslant {\rho ^2},\qquad j = 1,2,3, \ldots ,$

where $ 0 < \rho < {\rho _0}$ and $ {\rho _0} = 0.4559 \ldots $ is the positive root of the equation $ 2\Sigma _{j = 1}^\infty {\rho ^{{j^2}}} = 1$. Let $ r > 0$ be fixed. Let $ {W_{LM}}$ denote the rational function of type $ (L,M)$ of best approximation to $ f$ in the uniform norm on $ \vert z\vert \leqslant r$. We show that for any sequence of nonnegative integers $ \{ {M_L}\} _{L = 1}^\infty $ that satisfies $ {M_L} \leqslant 10L,\,L = 1,2,3, \ldots $, the rational approximations $ {W_{L{M_L}}}$ converge to $ f$ throughout $ {\mathbf{C}}$ as $ L \to \infty $. In particular, convergence takes place for the diagonal sequence and for the row sequences of the Walsh array for $ f$.

References [Enhancements On Off] (What's this?)

  • [1] R. J. Arms and A. Edrei, The Padé tables and continued fractions generated by totally positive sequences, Mathematical Essays, Dedicated to A. J. Macintyre, Ohio Univ. Press, 1970, pp. 1-21. MR 0276452 (43:2199)
  • [2] D. Braess, On the conjecture of Meinardus on rational approximation to $ {e^x}$. II, J. Approx. Theory 40 (1984), 375-379. MR 740650 (85j:41030)
  • [3] D. S. Lubinsky, Padé tables of a class of entire functions, Proc. Amer. Math. Soc. 94 (1985), 399-405. MR 787881 (86i:30045)
  • [4] -, Padé tables of entire functions of very slow and smooth growth, Constructive Approx. (to appear).
  • [5] A. Ostrowski, Note on bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 3 (1952), 26-30. MR 0052380 (14:611c)
  • [6] E. B. Saff, The convergence of rational functions of best approximation to the exponential function, Trans. Amer. Math. Soc. 153 (1971), 483-493. MR 0274775 (43:535)
  • [7] -The convergence of rational functions of best approximation to the exponential function. II, Proc. Amer. Math. Soc. 32 (1972), 187-194. MR 0294656 (45:3724)
  • [8] -, On the degree of best rational approximation to the exponential function, J. Approx. Theory 9 (1973), 97-101. MR 0357807 (50:10274)
  • [9] L. N. Trefethen, The asymptotic accuracy of rational best approximation to $ {e^x}$ on a disk, J. Approx. Theory 40 (1984), 380-383. MR 740651 (85j:41031)
  • [10] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1956. MR 0218588 (36:1672b)
  • [11] -, Padé approximations as limits of rational functions of best approximation, J. Math. Mech. 13 (1964), 305-312. MR 0161074 (28:4283)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30E10, 41A20

Retrieve articles in all journals with MSC: 30E10, 41A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0816308-9
Keywords: Padé table, best rational approximation, Walsh array
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society