Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly

Authors:
A. L. Levin and D. S. Lubinsky

Journal:
Trans. Amer. Math. Soc. **293** (1986), 533-545

MSC:
Primary 30E10; Secondary 41A20

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816308-9

MathSciNet review:
816308

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an entire function which satisfies

**[1]**Robert J. Arms and Albert Edrei,*The Padé tables and continued fractions generated by totally positive sequences*, Mathematical Essays Dedicated to A. J. Macintyre, Ohio Univ. Press, Athens, Ohio, 1970, pp. 1–21. MR**0276452****[2]**Dietrich Braess,*On the conjecture of Meinardus on rational approximation of 𝑒^{𝑥}. II*, J. Approx. Theory**40**(1984), no. 4, 375–379. MR**740650**, https://doi.org/10.1016/0021-9045(84)90012-1**[3]**D. S. Lubinsky,*Padé tables of a class of entire functions*, Proc. Amer. Math. Soc.**94**(1985), no. 3, 399–405. MR**787881**, https://doi.org/10.1090/S0002-9939-1985-0787881-9**[4]**-,*Padé tables of entire functions of very slow and smooth growth*, Constructive Approx. (to appear).**[5]**A. M. Ostrowski,*Note on bounds for determinants with dominant principal diagonal*, Proc. Amer. Math. Soc.**3**(1952), 26–30. MR**0052380**, https://doi.org/10.1090/S0002-9939-1952-0052380-7**[6]**E. B. Saff,*The convergence of rational functions of best approximation to the exponential function*, Trans. Amer. Math. Soc.**153**(1971), 483–493. MR**0274775**, https://doi.org/10.1090/S0002-9947-1971-0274775-5**[7]**E. B. Saff,*The convergence of rational functions of best approximation to the exponential function. II*, Proc. Amer. Math. Soc.**32**(1972), 187–194. MR**0294656**, https://doi.org/10.1090/S0002-9939-1972-0294656-7**[8]**E. B. Saff,*On the degree of best rational approximation to the exponential function*, J. Approximation Theory**9**(1973), 97–101. MR**0357807****[9]**Lloyd N. Trefethen,*The asymptotic accuracy of rational best approximations to 𝑒^{𝑧} on a disk*, J. Approx. Theory**40**(1984), no. 4, 380–383. MR**740651**, https://doi.org/10.1016/0021-9045(84)90013-3**[10]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588****[11]**J. L. Walsh,*Padé approximants as limits of rational functions of best approximation*, J. Math. Mech.**13**(1964), 305–312. MR**0161074**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30E10,
41A20

Retrieve articles in all journals with MSC: 30E10, 41A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816308-9

Keywords:
Padé table,
best rational approximation,
Walsh array

Article copyright:
© Copyright 1986
American Mathematical Society