Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly

Authors:
A. L. Levin and D. S. Lubinsky

Journal:
Trans. Amer. Math. Soc. **293** (1986), 533-545

MSC:
Primary 30E10; Secondary 41A20

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816308-9

MathSciNet review:
816308

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an entire function which satisfies

**[1]**R. J. Arms and A. Edrei,*The Padé tables and continued fractions generated by totally positive sequences*, Mathematical Essays, Dedicated to A. J. Macintyre, Ohio Univ. Press, 1970, pp. 1-21. MR**0276452 (43:2199)****[2]**D. Braess,*On the conjecture of Meinardus on rational approximation to*. II, J. Approx. Theory**40**(1984), 375-379. MR**740650 (85j:41030)****[3]**D. S. Lubinsky,*Padé tables of a class of entire functions*, Proc. Amer. Math. Soc.**94**(1985), 399-405. MR**787881 (86i:30045)****[4]**-,*Padé tables of entire functions of very slow and smooth growth*, Constructive Approx. (to appear).**[5]**A. Ostrowski,*Note on bounds for determinants with dominant principal diagonal*, Proc. Amer. Math. Soc.**3**(1952), 26-30. MR**0052380 (14:611c)****[6]**E. B. Saff,*The convergence of rational functions of best approximation to the exponential function*, Trans. Amer. Math. Soc.**153**(1971), 483-493. MR**0274775 (43:535)****[7]**-*The convergence of rational functions of best approximation to the exponential function*. II, Proc. Amer. Math. Soc.**32**(1972), 187-194. MR**0294656 (45:3724)****[8]**-,*On the degree of best rational approximation to the exponential function*, J. Approx. Theory**9**(1973), 97-101. MR**0357807 (50:10274)****[9]**L. N. Trefethen,*The asymptotic accuracy of rational best approximation to**on a disk*, J. Approx. Theory**40**(1984), 380-383. MR**740651 (85j:41031)****[10]**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, 2nd ed., Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R. I., 1956. MR**0218588 (36:1672b)****[11]**-,*Padé approximations as limits of rational functions of best approximation*, J. Math. Mech.**13**(1964), 305-312. MR**0161074 (28:4283)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30E10,
41A20

Retrieve articles in all journals with MSC: 30E10, 41A20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816308-9

Keywords:
Padé table,
best rational approximation,
Walsh array

Article copyright:
© Copyright 1986
American Mathematical Society