Topological properties of Souslin subsets
Author:
R. W. Hansell
Journal:
Trans. Amer. Math. Soc. 293 (1986), 613622
MSC:
Primary 54H05; Secondary 04A15, 54D15
MathSciNet review:
816314
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a subparacompact regular space such that the projection map , where is the space of irrational numbers, preserves collections of sets having a locally finite refinement. It is shown that then preserves generalized sets. It follows that, if has any tpological property which is hereditary with respect to generalized sets, then every Souslin subset of will also have this property in the relative topology. Such topological properties include nearly all covering properties (paracompactness, metacompactness, etc.), as well as normality, collectionwise normality, and the Lindelöf property. We show that the above mapping property will hold whenever is a space, thus, in particular, when is any Souslin (hence any Baire) subset of a compact space crossed with a metrizable space. Additional topological properties of Souslin subsets, such as topological completeness, realcompactness, embeddedness, and the properties of being a space or space, are also considered.
 [1]
Richard
A. Alò and Harvey
L. Shapiro, Normal topological spaces, Cambridge University
Press, New YorkLondon, 1974. Cambridge Tracts in Mathematics, No. 65. MR 0390985
(52 #11808)
 [2]
Dennis
K. Burke, Covering properties, Handbook of settheoretic
topology, NorthHolland, Amsterdam, 1984, pp. 347–422. MR 776628
(86e:54030)
 [3]
W.
W. Comfort and S.
Negrepontis, Continuous pseudometrics, Marcel Dekker, Inc.,
New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol. 14. MR 0410618
(53 #14366)
 [4]
Ryszard
Engelking, General topology, PWN—Polish Scientific
Publishers, Warsaw, 1977. Translated from the Polish by the author;
Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60]. MR 0500780
(58 #18316b)
 [5]
R.
W. Hansell, J.
E. Jayne, and C.
A. Rogers, 𝐾analytic sets, Mathematika
30 (1983), no. 2, 189–221 (1984). MR 737176
(85b:54059), http://dx.doi.org/10.1112/S0025579300010524
 [6]
R.
W. Hansell, J.
E. Jayne, and C.
A. Rogers, 𝐾analytic sets, Mathematika
30 (1983), no. 2, 189–221 (1984). MR 737176
(85b:54059), http://dx.doi.org/10.1112/S0025579300010524
 [7]
J. E. Jayne and C. A. Rogers, analytic sets, Analytic Sets, Academic Press, London, 1980.
 [8]
David
J. Lutzer, Another property of the Sorgenfrey line, Compositio
Math. 24 (1972), 359–363. MR 0307171
(46 #6292)
 [9]
Ernest
Michael, A note on paracompact spaces,
Proc. Amer. Math. Soc. 4 (1953), 831–838. MR 0056905
(15,144b), http://dx.doi.org/10.1090/S00029939195300569058
 [10]
E.
Michael, The product of a normal space and a
metric space need not be normal, Bull. Amer.
Math. Soc. 69
(1963), 375–376. MR 0152985
(27 #2956), http://dx.doi.org/10.1090/S000299041963109313
 [11]
, On Nagami's spaces and some related matters, Proc. Washington State Univ. Conf. on General Topology, Pullman, Wash., 1970, pp. 1319.
 [12]
E.
Michael, On maps related to 𝜎locally finite and
𝜎discrete collections of sets, Pacific J. Math.
98 (1982), no. 1, 139–152. MR 644945
(83b:54012)
 [13]
Kiiti
Morita, Products of normal spaces with metric spaces, Math.
Ann. 154 (1964), 365–382. MR 0165491
(29 #2773)
 [14]
Keiô
Nagami, Σspaces, Fund. Math. 65
(1969), 169–192. MR 0257963
(41 #2612)
 [1]
 R. A. Alo and H. L. Shapiro, Normal topological spaces, Cambridge Univ. Press, Cambridge, 1974. MR 0390985 (52:11808)
 [2]
 D. Burke, Covering properties, Handbook of SetTheoretic Topology, NorthHolland, Amsterdam, 1984. MR 776628 (86e:54030)
 [3]
 W. W. Comfort and S. Negrepontis, Continuous pseudometrics, Lecture Notes in Pure and Appl. Math., Vol. 14, Dekker, New York, 1975. MR 0410618 (53:14366)
 [4]
 R. Engelking, General Tpology, Polish Scientific Publishers, Warsaw, 1977. MR 0500780 (58:18316b)
 [5]
 R. W. Hansell, J. E. Jayne and C. A. Rogers, analytic sets, Mathematika 30 (1983), 189221. MR 737176 (85b:54059)
 [6]
 R. W. Hansell, J. E. Jayne and C. A. Rogers, Separation of analytic sets, Mathematika (to appear). MR 737176 (85b:54059)
 [7]
 J. E. Jayne and C. A. Rogers, analytic sets, Analytic Sets, Academic Press, London, 1980.
 [8]
 D. J. Lutzer, Another property of the Sorgenfrey line, Compositio Math. 24 (1972), 359363. MR 0307171 (46:6292)
 [9]
 E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831838. MR 0056905 (15:144b)
 [10]
 , The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375376. MR 0152985 (27:2956)
 [11]
 , On Nagami's spaces and some related matters, Proc. Washington State Univ. Conf. on General Topology, Pullman, Wash., 1970, pp. 1319.
 [12]
 , On maps related to locally finite and discrete collections of sets, Pacific J. Math. 98 (1982), 139152. MR 644945 (83b:54012)
 [13]
 K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365382. MR 0165491 (29:2773)
 [14]
 K. Nagami, spaces, Fund. Math. 65 (1969), 169192. MR 0257963 (41:2612)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
54H05,
04A15,
54D15
Retrieve articles in all journals
with MSC:
54H05,
04A15,
54D15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198608163144
PII:
S 00029947(1986)08163144
Keywords:
Souslin set,
generalized set,
covering properties,
space,
space,
refinement locally finite maps
Article copyright:
© Copyright 1986
American Mathematical Society
