Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Entire functions which are infinitely integer-valued at a finite number of points


Authors: P. Lockhart and E. G. Straus
Journal: Trans. Amer. Math. Soc. 293 (1986), 643-654
MSC: Primary 30D15
DOI: https://doi.org/10.1090/S0002-9947-1986-0816316-8
MathSciNet review: 816316
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper determines arithmetic limits for the growth rates of entire functions which are infinitely integer valued on a finite set $ S$. The characterization of such functions with growth rate less than the arithmetic limit is complete if there exist exponential polynomials which are infinitely integer valued on $ S$.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker, Transcendental number theory, Cambridge Univ. Press, London, 1975. MR 0422171 (54:10163)
  • [2] A. H. Cayford, A class of integer valued entire functions, Trans. Amer. Math. Soc. 141 (1969), 415-432. MR 0244486 (39:5800)
  • [3] A. Cayford and E. G. Straus, On differential rings of entire functions, Trans. Amer. Math. Soc. 209 (1975), 283-293. MR 0382671 (52:3553)
  • [4] B. Ja. Levin, Distribution of zeros of entire functions, Transl. Math. Monos., vol. 5, Amer. Math. Soc., Providence, R. I., 1964. MR 0156975 (28:217)
  • [5] L. M. Milne-Thomson, The calculus of finite differences, Macmillan, New York, 1933. MR 0043339 (13:245c)
  • [6] L. D. Neidleman and E. G. Straus, Functions whose derivatives at a point form a finite set, Trans. Amer. Math. Soc. 140 (1969), 411-414. MR 0241644 (39:2983)
  • [7] D. Sato, Integer valued entire functions, Thesis, UCLA, 1961; see also Sugaku 14 (1962/63), 95-98 and 99-100. MR 0150302 (27:303)
  • [8] D. Sato and E. G. Straus, On the rate of growth of Hurwitz functions of a complex or $ p$-adic variable, J. Math. Soc. Japan 171 (1965), 17-29. MR 0192030 (33:257)
  • [9] E. G. Straus, On entire functions with algebraic derivatives at certain algebraic points, Amer. J. Math. 52 (1950), 188-198. MR 0035822 (12:15k)
  • [10] -, On polynomials whose derivatives have integer values at the integers, Proc. Amer. Math. Soc. 2 (1951), 24-27. MR 0040481 (12:700c)
  • [11] -, Differential rings of meromorphic functions, Acta Arith. 21 (1972), 271-284. MR 0308418 (46:7532)
  • [12] -, Differential rings of meromorphic functions of a non-Archimedean variable, Diophantine approximation and its applications (Proc. Conf. Washington, D. C., 1972), Academic Press, New York, 1973, pp. 295-308.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D15

Retrieve articles in all journals with MSC: 30D15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0816316-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society