Entire functions which are infinitely integer-valued at a finite number of points

Authors:
P. Lockhart and E. G. Straus

Journal:
Trans. Amer. Math. Soc. **293** (1986), 643-654

MSC:
Primary 30D15

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816316-8

MathSciNet review:
816316

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper determines arithmetic limits for the growth rates of entire functions which are infinitely integer valued on a finite set . The characterization of such functions with growth rate less than the arithmetic limit is complete if there exist exponential polynomials which are infinitely integer valued on .

**[1]**A. Baker,*Transcendental number theory*, Cambridge Univ. Press, London, 1975. MR**0422171 (54:10163)****[2]**A. H. Cayford,*A class of integer valued entire functions*, Trans. Amer. Math. Soc.**141**(1969), 415-432. MR**0244486 (39:5800)****[3]**A. Cayford and E. G. Straus,*On differential rings of entire functions*, Trans. Amer. Math. Soc.**209**(1975), 283-293. MR**0382671 (52:3553)****[4]**B. Ja. Levin,*Distribution of zeros of entire functions*, Transl. Math. Monos., vol. 5, Amer. Math. Soc., Providence, R. I., 1964. MR**0156975 (28:217)****[5]**L. M. Milne-Thomson,*The calculus of finite differences*, Macmillan, New York, 1933. MR**0043339 (13:245c)****[6]**L. D. Neidleman and E. G. Straus,*Functions whose derivatives at a point form a finite set*, Trans. Amer. Math. Soc.**140**(1969), 411-414. MR**0241644 (39:2983)****[7]**D. Sato,*Integer valued entire functions*, Thesis, UCLA, 1961; see also Sugaku**14**(1962/63), 95-98 and 99-100. MR**0150302 (27:303)****[8]**D. Sato and E. G. Straus,*On the rate of growth of Hurwitz functions of a complex or*-*adic variable*, J. Math. Soc. Japan**171**(1965), 17-29. MR**0192030 (33:257)****[9]**E. G. Straus,*On entire functions with algebraic derivatives at certain algebraic points*, Amer. J. Math.**52**(1950), 188-198. MR**0035822 (12:15k)****[10]**-,*On polynomials whose derivatives have integer values at the integers*, Proc. Amer. Math. Soc.**2**(1951), 24-27. MR**0040481 (12:700c)****[11]**-,*Differential rings of meromorphic functions*, Acta Arith.**21**(1972), 271-284. MR**0308418 (46:7532)****[12]**-,*Differential rings of meromorphic functions of a non-Archimedean variable, Diophantine approximation and its applications*(Proc. Conf. Washington, D. C., 1972), Academic Press, New York, 1973, pp. 295-308.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30D15

Retrieve articles in all journals with MSC: 30D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0816316-8

Article copyright:
© Copyright 1986
American Mathematical Society