Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the dichotomy problem for tensor algebras


Author: J. Bourgain
Journal: Trans. Amer. Math. Soc. 293 (1986), 793-798
MSC: Primary 43A25; Secondary 42A16, 43A46
DOI: https://doi.org/10.1090/S0002-9947-1986-0816324-7
MathSciNet review: 816324
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I$, $ J$ be discrete spaces and $ E \subset I \times J$. Then either $ E$ is a $ V$-Sidon set (in the sense of $ [{\mathbf{2}},\S11]$), or the restriction algebra $ A(E)$ is analytic. The proof is based on probabilistic methods, involving Slépian's lemma.


References [Enhancements On Off] (What's this?)

  • [1] J. Bourgain and V. D. Milman, La dychotomie du cotype pour les espaces invariants, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 263-266. MR 785065 (86i:43010)
  • [2] G. Graham and C. McGehee, Essays in commutative harmonic analysis, Springer, New York, 1982.
  • [3] X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes in Math., vol. 480, Springer, New York, 1975. MR 0413238 (54:1355)
  • [4] S. Kwapien and A. Pelczynski, Absolutely summing operators and translation invariant spaces of functions on compact abelian groups, Math. Nachr. 94 (1980), 303-340. MR 582532 (81j:47015)
  • [5] Y. Katznelson and P. Malliavin, Un critère d'analyticitè pour les algèbres de restriction, C. R. Acad. Sci. Paris Sér. A--B 261 (1965), A4964-A4967. MR 0203373 (34:3226a)
  • [6] -, Verification statistique de la conjecture de la dichotomie sur une classe d'algèbres de restriction, C. R. Acad. Sci. Paris Sér. A--B 262 (1966), A490-A492.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A25, 42A16, 43A46

Retrieve articles in all journals with MSC: 43A25, 42A16, 43A46


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0816324-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society