Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Weak limits of stopped diffusions

Authors: J. R. Baxter, R. V. Chacon and N. C. Jain
Journal: Trans. Amer. Math. Soc. 293 (1986), 767-792
MSC: Primary 60J60; Secondary 35K99, 60G40, 60J45
MathSciNet review: 816325
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the following homogenization problem: Let Brownian motion in $ {{\mathbf{R}}^d}$, $ d \geqslant 3$, be killed on the surface of many small absorbing bodies (standard diffusion equation with Dirichlet boundary conditions). We investigate the limit as the number of bodies approaches infinity and the size of the bodies approaches 0. By taking a weak limit of stopping times we replace a convergence problem on the state space by an identification of the limit on the sample space. This technique then gives results without smoothness assumptions which were previously necessary.

References [Enhancements On Off] (What's this?)

  • [1] J. R. Baxter and R. V. Chacon, Compactness of stopping times, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 40 (1977), no. 3, 169–181. MR 0517871
  • [2] J. R. Baxter and R. V. Chacon, Enlargement of 𝜎-algebras and compactness of time changes, Canad. J. Math. 29 (1977), no. 5, 1055–1065. MR 0517870
  • [3] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258
  • [4] G. A. Edgar, A. Millet, and L. Sucheston, On compactness and optimality of stopping times, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 36–61. MR 668536
  • [5] P.-A. Meyer, Convergence faible et compacité des temps d’arrêt d’après Baxter et Chacon, Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977), Lecture Notes in Math., vol. 649, Springer, Berlin, 1978, pp. 411–423 (French). MR 520015
  • [6] G. C. Papanicolaou and S. R. S. Varadhan, Diffusion in regions with many small holes, Stochastic differential systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978) Lecture Notes in Control and Information Sci., vol. 25, Springer, Berlin-New York, 1980, pp. 190–206. MR 609184
  • [7] Jeffrey Rauch and Michael Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal. 18 (1975), 27–59. MR 0377303

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 35K99, 60G40, 60J45

Retrieve articles in all journals with MSC: 60J60, 35K99, 60G40, 60J45

Additional Information

Keywords: Homogenization, stopping times, compactness
Article copyright: © Copyright 1986 American Mathematical Society