Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extensions of Verma modules


Author: Kevin J. Carlin
Journal: Trans. Amer. Math. Soc. 294 (1986), 29-43
MSC: Primary 17B10; Secondary 17B20, 22E47
DOI: https://doi.org/10.1090/S0002-9947-1986-0819933-4
MathSciNet review: 819933
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A spectral sequence is introduced which computes extensions in category $ \mathcal{O}$ in terms of derived functors associated to coherent translation functors.

This is applied to the problem of computing extensions of one Verma module by another when the highest weights are integral and regular. Some results are obtained which are consistent with the Gabber-Joseph conjecture. The main result is that the highest-degree nonzero extension is one-dimensional.

The spectral sequence is also applied to the Kazhdan-Lusztig conjecture and related to the work of Vogan in this area.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Beilinson and I. N. Bernstein, Localisation of $ g$-modules, C. R. Acad. Sci., Paris Sér. 292 (1981), 15-18. MR 610137 (82k:14015)
  • [2] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space and a study of $ g$-modules, Lie Groups and their Representations (Ed., I. M. Gelfand), Wiley, New York, 1975, pp. 39-64.
  • [3] -, A category of $ g$-modules, Funct. Anal. Appl. 10 (1976), 87-92.
  • [4] N. Bourbaki, Groupes et algébres de Lie, Chapters 4-6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [5] J. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410. MR 632980 (83e:22020)
  • [6] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [7] C. Curtis and J. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York. 1962. MR 0144979 (26:2519)
  • [8] P. Delorme, Extensions dans la catégorie $ \mathcal{O}$ de Bernstein-Gelfand-Gelfand: Applications, preprint, Palaiscau, 1978.
  • [9] V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Moebius function, Invent. Math. 39 (1977), 187-198. MR 0435249 (55:8209)
  • [10] J. Dixmier, Algébres enveloppantes, Gauthier-Villars, Paris, 1974. MR 0498737 (58:16803a)
  • [11] O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. Ecole Norm. Sup. 14 (1981), 261-302. MR 644519 (83e:17009)
  • [12] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., vol. 750, Springer-Verlag, Berlin. 1980. MR 552943 (81m:17011)
  • [13] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. MR 560412 (81j:20066)
  • [14] -, Schubert varieties and Poincarè duality, Proc. Sympos. Pure Math., vol. 36, Amer. Math. Soc., Providence, R. I., 1980, pp. 185-203. MR 573434 (84g:14054)
  • [15] W. Schmid, Vanishing theorems for Lie algebra cohomology and the cohomology of discrete subgroups of semisimple Lie groups, Adv. in Math. 41 (1981), 78-113. MR 625335 (82h:17009)
  • [16] D. N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968). 160-166. MR 0218417 (36:1503)
  • [17] -, Moebius inversion for the Bruhat ordering on a Weyl group, Ann. Sci. Ecole Norm. Sup. 4 (1971), 393-398. MR 0291045 (45:139)
  • [18] D. Vogan, Irreducible characters of semisimple Lie groups. I, Duke Math. J. 46 (1979). 61-108. MR 523602 (80g:22016)
  • [19] -, Irreducible characters of semisimple Lie groups. II: the Kazhdan-Lusztig conjectures, Duke Math. J. 46 (1979), 805-859. MR 552528 (81f:22024)
  • [20] G. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math. 106 (1977), 295-308. MR 0457636 (56:15841)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B10, 17B20, 22E47

Retrieve articles in all journals with MSC: 17B10, 17B20, 22E47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0819933-4
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society