Clarke's gradients and epsilon-subgradients in Banach spaces

Author:
Jay S. Treiman

Journal:
Trans. Amer. Math. Soc. **294** (1986), 65-78

MSC:
Primary 90C48; Secondary 46G05, 49A52, 58C20

DOI:
https://doi.org/10.1090/S0002-9947-1986-0819935-8

MathSciNet review:
819935

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new characterization of Clarke's normal cone to a closed set in a Banach space is given. The normal cone is characterized in terms of weak-star limits of epsilon normals. A similar characterization of Clarke's generalized gradients is also presented. Restrictions must be placed on the Banach spaces to make the formulas valid.

**[1]**J. P. Aubin and F. H. Clarke,*Shadow prices and duality for a class of optimal control problems*, SIAM J. Control Optim.**17**(1979) 567-586. MR**540838 (80i:49026)****[2]**J. M. Borwein and H. M. Strojwas,*Proximal analysis and boundaries of closed sets in Banach spaces. Part*1:*Theory*, Canad. J. Math. (to appear).**[3]**F. H. Clarke,*The Erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations*, Canad. J. Math.**32**(1980), 494-507. MR**571941 (81f:49002)****[4]**-,*Optimization an nonsmooth analysis*, Wiley, New York, 1983. MR**709590 (85m:49002)****[5]**J. Diestel,*Geometry of Banach spaces*:*selected topics*, Springer-Verlag, New York, 1975. MR**0461094 (57:1079)****[6]**S. Dolecki,*Tangency and differentiation*:*some applications of convergence*, Ann. Mat. Pura Appl. (4)**80**(1982), 223-255. MR**663973 (83j:58015)****[7]**I. Ekeland,*On the variational principle*, J. Math. Anal. Appl.**47**(1974), 324-353. MR**0346619 (49:11344)****[8]**T. M. Flett,*Differential analysis*, Cambridge Univ. Press, Cambridge, 1980. MR**561908 (82e:26021)****[9]**A. A. Goldstein,*Optimization of Lipschitz continuous functions*, Math. Programming**13**(1977), 14-22. MR**0443335 (56:1705)****[10]**J. Hagler and H. Sullivan,*Smoothness and weak**sequential compactness*, Proc. Amer. Math. Soc.**78**(1980), 497-503. MR**556620 (81i:46010)****[11]**A. D. Ioffe,*Approximate subdifferentials of nonconvex functions*, Cahiers Math Decision, no. 8120, Univ. Paris-Dauphine, 1981.**[12]**A. Ja. Kruger and B. Sh. Mordukhovich,*Extreme points and Euler equations in nondifferentiable optimization problems*, Dokl. Akad. Nauk SSSR**24**(1980), 684-687. MR**587714 (82b:90127)****[13]**R. R. Phelps,*Differentiability of convex functions on Banach spaces*, lecture notes (unpublished), University College, London, 1978.**[14]**R. T. Rockafellar,*Generalized directional derivatives and subgradients of nonconvex functions*, Canad. J. Math.**32**(1980), 257-280. MR**571922 (81f:49006)****[15]**-,*Proximal subgradients, marginal values and augmented Lagrangians in nonconvex optimization*, Math. Oper. Res.**6**(1981), 424-436. MR**629642 (83m:90088)****[16]**-,*The theory of subgradients and its applications to problems of optimization*, Heldermann, Berlin, 1981. MR**623763 (83b:90126)****[17]**L. Thibault,*Quelques proprietes des sous-differentials de fonctions reelles localement Lipschitziennes definies sur un espace de Banach separable*, C. R. Acad. Sci. Paris Ser. A-B**282**(1976), A507-A510. MR**0428354 (55:1378)****[18]**J. S. Treiman,*Characterization of Clarke's tangent and normal cones in finite and infinite dimensions*, Nonlinear Anal.**7**(1983), 771-783. MR**707085 (84i:90144)****[19]**-,*A new characterization of Clarke's tangent cone and its applications to subgradient analysis and optitmization*, Ph.D. Thesis, Univ. of Washington, 1983.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
90C48,
46G05,
49A52,
58C20

Retrieve articles in all journals with MSC: 90C48, 46G05, 49A52, 58C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0819935-8

Keywords:
Nondifferentiable functions,
generalized gradients,
tangent cones,
normal cones

Article copyright:
© Copyright 1986
American Mathematical Society