HYPERREFLEXIVITY AND A DUAL PRODUCT CONSTRUCTION1

BY

DAVID R. LARSON

Abstract. We show that an example of a nonhyperreflexive CSL algebra recently constructed by Davidson and Power is a special case of a general and natural reflexive subspace construction. Completely different techniques of proof are needed because of absence of symmetry. It is proven that if \(\mathcal{S} \) and \(\mathcal{T} \) are reflexive proper linear subspaces of operators acting on a separable Hilbert space, then the hyperreflexivity constant of \((\mathcal{S} \perp \otimes \mathcal{T} \perp)^\perp \) is at least as great as the product of the constants of \(\mathcal{S} \) and \(\mathcal{T} \).

This paper was inspired by the interesting “key example” in the recent paper \[2\] by Davidson and Power in which a nonhyperreflexive CSL algebra was constructed. In an attempt to completely understand this result we obtained a distance constant inequality of a more general nature, which we present here.

Let \(H, K \) be separable Hilbert spaces—finite or infinite dimensional—and let \(\mathcal{S}, \mathcal{T} \) be linear subspaces of \(L(H), L(K) \), which are reflexive in the Loginov-Shulman sense. (\(\mathcal{S} \) is reflexive iff whenever \(T \in L(H) \) is such that \(Tx \in [Sx] \), \(x \in H \), then \(T \in \mathcal{S} \), where \([\cdot]\) means closure.) Let \(\mathcal{K}(\mathcal{S}), \mathcal{K}(\mathcal{T}) \) be the constants of hyperreflexivity of \(\mathcal{S} \) and \(\mathcal{T} \) as defined in \[4\]. We recall that a subspace \(\mathcal{S} \) of \(L(H) \) is hyperreflexive if there is a constant \(C \) such that for operators \(T \) in \(L(H) \),

\[
d(T, \mathcal{S}) \leq C \sup \{ \| P^\perp T Q \| : P, Q \text{ are projections with } P^\perp P Q = 0 \},
\]

and the optimal constant is denoted \(\mathcal{K}(\mathcal{S}) \). If \(\mathcal{S} \) is reflexive but not hyperreflexive, then we define \(\mathcal{K}(\mathcal{S}) = +\infty \). We make use of preannihilator techniques, and refer the reader to \[1, 4, 5, 7\] for details. As shown in \[4\], the reflexive subspaces of \(L(H) \) are precisely those for which the preannihilator in \(\mathcal{L}_1 \equiv C_1 \) is the \(\| \cdot \|_1 \)-closed linear span of rank \(\leq 1 \) operators, where \(\| \cdot \|_1 \) denotes trace-class norm. Since \(\mathcal{S}_\perp, \mathcal{T}_\perp \) are generated by rank \(\leq 1 \) operators, so is the tensor product of preannihilators \(\mathcal{S}_\perp \otimes \mathcal{T}_\perp \). By this we mean the \(\| \cdot \|_1 \)-closed linear subspace of the ideal of trace-class operators on \(L(H \otimes K) \) generated by the elementary tensors \(\{ f \otimes g : f \in \mathcal{S}_\perp, g \in \mathcal{T}_\perp \} \), where \(H \otimes K \) denotes the usual tensor product Hilbert space. (When we write \(\mathcal{S} \otimes \mathcal{T} \), we will mean the \(\sigma \)-weakly closed linear subspace of \(L(H \otimes K) \) generated by \(\{ S \otimes T : S \in \mathcal{S}, T \in \mathcal{T} \} \).) Thus the annihilator

\[
(\mathcal{S}_\perp \otimes \mathcal{T}_\perp)^\perp = \{ A \in L(H \otimes K) : \text{Tr}(Ah) = 0, h \in \mathcal{S}_\perp \otimes \mathcal{T}_\perp \}
\]

1 This work was partially supported by NSF grant MCS-8301740.

1 1986 American Mathematical Society

0002-9947/86 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
is a reflexive subspace of $L(H \otimes K)$. We will call this the dual product of \mathcal{S} and \mathcal{T} since it is in a sense dual to the usual tensor product, and will adopt the notation $\mathcal{S} \ast \mathcal{T} = (\mathcal{S} \perp \otimes \mathcal{T}) \perp$. We extend this term, and notation, to arbitrary σ-weakly closed subspaces.

For reflexive \mathcal{S} and \mathcal{T}, Theorem 8 states that $\mathcal{S} \ast \mathcal{T}$ is the smallest reflexive subspace containing $\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$. In special cases (and perhaps in general) this coincides with the σ-weak closure of $\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$. This is the case in finite dimensions (Proposition 1).

It is clear that for subspaces \mathcal{S}_i, we have $(\mathcal{S}_1 \ast \mathcal{S}_2) \ast \mathcal{S}_3 = \mathcal{S}_1 \ast (\mathcal{S}_2 \ast \mathcal{S}_3)$ (or rather, equivalence), so we may drop parentheses with no ambiguity. An n-fold dual product $\mathcal{S}_1 \ast \cdots \ast \mathcal{S}_n$ will have the n-fold tensor product $(\mathcal{S}_1 \perp \otimes \cdots \otimes \mathcal{S}_n) \perp$ as preannihilator.

The main result of this paper, Theorem 9, states that the inequality $\mathcal{K}(\mathcal{S} \ast \mathcal{T}) > \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{T})$ always holds for reflexive proper subspaces \mathcal{S}, \mathcal{T}. (If either $\mathcal{S} = L(H)$ or $\mathcal{T} = L(K)$, then $\mathcal{S} \ast \mathcal{T} = L(H \otimes K)$, so the inequality need not hold. These are the only exceptions.)

A special case arises when \mathcal{D} is the algebra of 3×3 diagonal operators acting on a 3-dimensional Hilbert space. Then, since it is known (M. D. Choi, unpublished) that $\mathcal{K}(\mathcal{D}) \geq \sqrt{9/8}$, the n-fold dual product $\mathcal{D} \ast \cdots \ast \mathcal{D}$ has constant $\geq (9/8)^n/2$. This is seen to be the Davidson-Power example. The subspace $\mathcal{D} \ast \cdots \ast \mathcal{D}$ is a bimodule over the n-fold tensor product $\mathcal{D} \otimes \cdots \otimes \mathcal{D}$ a.m.a.s.; hence

\[
\begin{pmatrix}
\mathcal{D} \otimes \cdots \otimes \mathcal{D} & \mathcal{D} \ast \cdots \ast \mathcal{D} \\
0 & \mathcal{D} \otimes \cdots \otimes \mathcal{D}
\end{pmatrix}
\]

is a CSL algebra. It can be shown directly, as in [2], or via duality, as in Theorem 12, that the hyperreflexivity constant for this algebra is at least as great as that of $\mathcal{D} \ast \cdots \ast \mathcal{D}$. Theorem 9 can be viewed as a generalization of the induction step in the Davidson-Power construction. Since averaging techniques utilizing symmetry do not apply, proofs are necessarily different. Prior to their example, inequalities of this nature were not suspected.

We note that while \mathcal{D} is an algebra, $\mathcal{D} \ast \mathcal{D}$ is not. Hence, analysis of multi-dual-products such as $\mathcal{D} \ast \cdots \ast \mathcal{D}$ requires reflexive subspace theory. Also, we note that Propositions 1 and 3 are not used in the proofs of our main results, but are given for perspective on these.

The next lemma will be used repeatedly.

Lemma 0. Let $\mathcal{S} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be linear subspaces. Then $\mathcal{S} \ast \mathcal{T} \supseteq \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$.

Proof. If $f \in \mathcal{S} \perp$, $g \in \mathcal{T} \perp$, then for each $S \in \mathcal{S}$, $T \in \mathcal{T}$, $A \in L(H)$, $B \in L(K)$ we have

\[
\begin{align*}
\text{Tr}[(S \otimes B + A \otimes T)(f \otimes g)] &= \text{Tr}[(Sf) \otimes (Bg)] + \text{Tr}[(Af) \otimes (Tg)] \\
&= \text{Tr}(Sf) \cdot \text{Tr}(Bg) + \text{Tr}(Af) \cdot \text{Tr}(Tg) \\
\text{Tr}(Sf) &= 0 \text{ and } \text{Tr}(Tg) = 0.
\end{align*}
\]

Since $\text{Tr}(Sf) = 0$ and $\text{Tr}(Tg) = 0$. Since the operators $S \otimes B + A \otimes T$ generate $\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$, and the operators $f \otimes g$ generate $\mathcal{S} \perp \otimes \mathcal{T} \perp = (\mathcal{S} \ast \mathcal{T}) \perp$, we conclude that $(\mathcal{S} \ast \mathcal{T}) \perp \subseteq (\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}) \perp$, and hence that $\mathcal{S} \ast \mathcal{T} \supseteq \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$. □
Proposition 1. Let H, K be finite dimensional Hilbert spaces, and let $\mathcal{S} \subseteq L(H)$, $\mathcal{T} \subseteq L(K)$ be linear subspaces. Then $\mathcal{S} \ast \mathcal{T} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$.

Proof. Let n_1, n_2 be the dimensions of H, K, respectively, and let m_1, m_2 be the vector space dimensions of \mathcal{S}, \mathcal{T}, respectively. Then $\dim(L(H)) = n_1^2$, $\dim(L(K)) = n_2^2$, $\dim(\mathcal{S} \perp) = n_1^2 - m_1$, and $\dim(\mathcal{T} \perp) = n_2^2 - m_2$. So $\dim(\mathcal{S} \perp \otimes \mathcal{T} \perp) = (n_1^2 - m_1)(n_2^2 - m_2)$, and thus

$$\dim(\mathcal{S} \otimes \mathcal{T}) = n_1^2 n_2^2 - (n_1^2 - m_1)(n_2^2 - m_2) = n_1^2 m_2 + m_1 n_2^2 - m_1 m_2.$$

If X, Y are finite dimensional vector spaces over \mathbb{C}, and if $X_1 \subseteq X$, $Y_1 \subseteq Y$ are linear subspaces, then $(X_1 \otimes Y) \cap (X \otimes Y_1) = X_1 \otimes Y_1$. Thus $(\mathcal{S} \otimes L(K)) \cap (L(H) \otimes \mathcal{T}) = \mathcal{S} \otimes \mathcal{T}$. So

$$\dim(\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}) = \dim(\mathcal{S} \otimes L(K)) + \dim(L(H) \otimes \mathcal{T}) - \dim(\mathcal{S} \otimes \mathcal{T}) = m_1 n_2^2 + n_1^2 m_2 - m_1 m_2 = \dim(\mathcal{S} \ast \mathcal{T}).$$

So by Lemma 0 we must have $\mathcal{S} \ast \mathcal{T} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T}$. □

If $\mathcal{A} \subseteq L(H)$ is a reflexive algebra and $T \in L(H)$, the Arveson estimate for the distance from T to \mathcal{A} is $\alpha(T, \mathcal{A}) = \sup\{\|P^\perp TP\|: P \in \text{lat} \mathcal{A}\}$. For reflexive subspaces $\mathcal{S} \subseteq L(H)$ the estimate is defined [4] by $\alpha(T, \mathcal{S}) = \sup\{\|P^\perp TQ\|: P, Q$ are projections with $P^\perp \mathcal{S}Q = 0\}$. This agrees with the “$P^\perp TP^\perp$” formula when $I \in \mathcal{S}$. There is a “projection free” characterization of this estimate which proves useful. Let $d(T, \cdot)$ denote distance.

Lemma 2. Let $\mathcal{S} \subseteq L(H)$ be a reflexive subspace. Then $\alpha(T, \mathcal{S}) = \sup\{d(Tx, \mathcal{S}x): x \in H, \|x\| = 1\}, T \in L(H)$.

Proof. We have $d(Tx, \mathcal{S}x) = \|P^\perp Tx\|$, where P is the orthogonal projection onto $[\mathcal{S}x]$. Let $\|x\| = 1$ and let Q be the projection onto Cx. Then $\|P^\perp Tx\| = \|P^\perp TQ\|$. Since $P^\perp Q = 0$, the inequality “\geq” follows.

Conversely, suppose P, Q are projections with $P^\perp \mathcal{S}Q = 0$. Let $\varepsilon > 0$ be given, and choose $x \in QH, \|x\| = 1$, such that $\|P^\perp Tx\| \geq \|P^\perp TQ\| - \varepsilon$. Then

$$d(Tx, \mathcal{S}x) \geq d(Tx, PH) = \|P^\perp Tx\| \geq \|P^\perp TQ\| - \varepsilon.$$

Since ε was arbitrary, we have $\|P^\perp TQ\| \leq \sup\{d(T, \mathcal{S}x): x \in H, \|x\| = 1\}$. Taking the supremum over all pairs $\{P, Q\}$ with $P^\perp \mathcal{S}Q = 0$ completes the proof. □

Lemma 2 points out that only cyclic projections P need be considered in distance estimate computations. Also, taking this as the definition permits natural extension of the concept to general normed linear spaces.

If $\mathcal{S} \neq L(H)$ is reflexive and $T \notin \mathcal{S}$, we write $\mathcal{A}(T, \mathcal{S}) = d(T, \mathcal{S})/\alpha(T, \mathcal{S})$. So $\mathcal{A}(\mathcal{S}) = \sup\{\mathcal{A}(T, \mathcal{S}): T \in L(H), T \notin \mathcal{S}\}$. By convention $\mathcal{A}(L(H)) = 1$. \mathcal{S} is hyperreflexive if $\mathcal{A}(\mathcal{S}) < \infty$, and is nonhyperreflexive otherwise.

We first give an initial generalization of the Davidson-Power induction step in which use is made of symmetry. The proof is more direct than that of our general result, so is included for perspective.
Proposition 3. Let \(\mathcal{S} \) be a reflexive subspace of \(L(H) \), with \(\mathcal{S} \neq L(H) \). Let

\[
\mathcal{F} = \begin{pmatrix}
* & \mathcal{S} & \mathcal{S} \\
\mathcal{S} & * & \mathcal{S} \\
\mathcal{S} & \mathcal{S} & *
\end{pmatrix}
\]

be the subspace of all \(3 \times 3 \) operator matrices with diagonal elements arbitrary and off-diagonal elements in \(\mathcal{S} \). Then \(\mathcal{K}(\mathcal{F}) \geq \sqrt{9/8} \cdot \mathcal{K}(\mathcal{S}) \).

Proof. First, suppose \(\mathcal{K}(\mathcal{S}) \) is finite. Fix \(\varepsilon > 0 \). Choose \(T \in L(H) \) for which \(\mathcal{K}(T, \mathcal{S}) \geq \mathcal{K}(\mathcal{S}) - \varepsilon \). Let

\[
\hat{T} = \begin{pmatrix}
T & T & T \\
T & T & T \\
T & T & T
\end{pmatrix}
\]

The averaging technique used in the proof of Theorem 1.1 in [2] yields without modification that \(d(\hat{T}, \mathcal{F}) = \frac{1}{3} \cdot d(T, \mathcal{S}) \). We need only show that \(\alpha(\hat{T}, \mathcal{F}) \leq \sqrt{2} \alpha(T, \mathcal{S}) \), for then

\[
\mathcal{K}(\mathcal{F}) \geq \mathcal{K}(\hat{T}, \mathcal{F}) \geq \sqrt{9/8} \mathcal{K}(T, \mathcal{S}) > \sqrt{9/8} (\mathcal{K}(\mathcal{S}) - \varepsilon),
\]

and since \(\varepsilon \) was arbitrary the desired inequality would follow.

To show that \(\alpha(\hat{T}, \mathcal{F}) \leq \sqrt{2} \alpha(T, \mathcal{S}) \), it is useful to use Lemma 2. Let

\[
\hat{x} = \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
\]

be an arbitrary unit vector in \(H \otimes H_3 \). Then

\[
\hat{\tilde{x}} = \begin{pmatrix}
Tz \\
Tz \\
Tz
\end{pmatrix},
\]

where \(z = x_1 + x_2 + x_3 \). Descriptively, we have

\[
\mathcal{F}\hat{x} = \begin{pmatrix}
* & \mathcal{S} & \mathcal{S} \\
\mathcal{S} & * & \mathcal{S} \\
\mathcal{S} & \mathcal{S} & *
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
L(H)x_1 + \mathcal{S}x_2 + \mathcal{S}x_3 \\
\mathcal{S}x_1 + L(H)x_2 + \mathcal{S}x_3 \\
\mathcal{S}x_1 + \mathcal{S}x_2 + L(H)x_3
\end{pmatrix}.
\]

We consider three cases:

1. If neither \(x_1, x_2 \) nor \(x_3 = 0 \), then \(\mathcal{F}\hat{x} = H \otimes H_3 \), so \(d(\hat{\tilde{x}}, \mathcal{F}\hat{x}) = 0 \).
2. If precisely one of \(x_1, x_2, x_3 \) is 0, then without loss of generality we may assume \(x_1 = 0 \) by noting that \(\mathcal{F} \) is invariant under the group of unitary transformations corresponding to permutation of basis vectors in \(H_3 \). We have \(z = x_2 + x_3 \), and

\[
\mathcal{F}\hat{x} = \begin{pmatrix}
\mathcal{S}x_2 + \mathcal{S}x_3 \\
L(H) \\
L(H)
\end{pmatrix},
\]

so

\[
d(\hat{\tilde{x}}, \mathcal{F}\hat{x}) = d(Tz, \mathcal{S}x_2 + \mathcal{S}x_3) \leq d(Tz, \mathcal{S}z).
\]
We have \(\|z\| \leq \sqrt{2} \). If \(z = 0 \), then \(d(\tilde{T}x, \tilde{S}x) = 0 \). If \(z \neq 0 \), let \(w = z/\|z\| \). Then
\[
d(\tilde{T}x, \tilde{S}x) = \sqrt{2} d(Tw, Sw) \leq \sqrt{2} \alpha(T, S),
\]
as desired.

(3) If precisely two of \(x_1, x_2, x_3 \) are 0, via permutation as above, we may assume \(x_1 = x_2 = 0 \). Then \(z = x_3 \), so \(\|z\| = 1 \). We have
\[
\tilde{S}x = \begin{pmatrix}
S_z \\
S_z \\
L(H)
\end{pmatrix},
\]
so
\[
d(\tilde{T}x, \tilde{S}x) = \sqrt{2} d(Tz, Sz) \leq \sqrt{2} \alpha(T, S).
\]

Now from cases (1)–(3) we have
\[
\alpha(T, S) = \sup \{ d(\tilde{T}x, \tilde{S}x) : \tilde{x} \in H \otimes H_3, \|\tilde{x}\| = 1 \} \\
\leq \sqrt{2} \alpha(T, S),
\]
as required. For the case \(\mathcal{K}(S) = \infty \), let \(n \geq 1 \) be arbitrary and choose \(T \) with \(\mathcal{K}(T, S) \geq n \). The same argument as above shows that \(\mathcal{K}(\tilde{T}, \tilde{S}) \geq \sqrt{9/8} n \). Hence \(\mathcal{K}(\tilde{S}) = +\infty \). \(\square \)

A simple duality computation shows that the preannihilator of \(\tilde{S} \) in Proposition 3 has the form
\[
\tilde{S} \perp = \begin{pmatrix}
0 & S_\perp & S_\perp \\
S_\perp & 0 & S_\perp \\
S_\perp & S_\perp & 0
\end{pmatrix},
\]
where \(S_\perp \) is the preannihilator of \(S \). The preannihilator of \(D_3 \) has the form
\[
\begin{pmatrix}
0 & * & * \\
* & 0 & * \\
* & * & 0
\end{pmatrix},
\]
so \(\tilde{S} \perp = S_\perp \otimes (D_3)_\perp \), and hence \(\tilde{S} = (S_\perp \otimes (D_3)_\perp \perp = S \ast (D_3 \ast) \). This suggests that a generalization is possible. The next proposition is used in place of an averaging technique.

Proposition 4. Let \(S \subseteq L(H) \), \(T \subseteq L(K) \) be \(\sigma \)-weakly closed subspaces. If \(A \in L(H) \) and \(B \in L(K) \) are arbitrary, then \(d(A \otimes B, S \ast T) = d(A, S) \cdot d(B, T) \).

Proof. Let \(R = S \otimes L(K) + L(H) \otimes T \). By Lemma 0 we have \(R \subseteq S \ast T \), so for each \(S \in S \) and \(T \in T \) we have \((A - S) \otimes (B - T) - A \otimes B \in R \subseteq S \ast T \). Thus
\[
d(A \otimes B, S \ast T) = d((A - S) \otimes (B - T), S \ast T) \leq \|A - S\| \cdot \|B - T\|.
\]
It follows that \(d(A \otimes B, S \ast T) \leq d(A, S) \cdot d(B, T) \).
For the reverse inequality, let \(\varepsilon > 0 \) be given and choose \(f \in \mathcal{S}_1 \cdot g \in \mathcal{T}_1 \) with \(\|f\|_1 = \|g\|_1 = 1 \), such that \(\text{Tr}(Af) > d(A, \mathcal{S}) - \varepsilon \), and \(\text{Tr}(Bg) > d(B, \mathcal{T}) - \varepsilon \). Let \(h = f \otimes g \). We have

\[
\left| \text{Tr}((A \otimes B)h) \right| = \left| \text{Tr}(Af \otimes Bg) \right| = \left| \text{Tr}(Af) \right| \cdot \left| \text{Tr}(Bg) \right| > (d(A, \mathcal{S}) - \varepsilon) \cdot (d(B, \mathcal{T}) - \varepsilon).
\]

Since \(h \) is a norm \(-1\) operator in \(\mathcal{S}_1 \otimes \mathcal{T}_1 \), and this is the preannihilator of \(\mathcal{S} \ast \mathcal{T} \) by definition, this implies that \(d(A \otimes B, \mathcal{S} \ast \mathcal{T}) > (d(A, \mathcal{S}) - \varepsilon) \cdot (d(B, \mathcal{T}) - \varepsilon) \).

Since \(\varepsilon \) was arbitrary, the proof is complete. \(\square \)

Lemma 5. Let \(\mathcal{S} \subseteq L(H) \) be a linear subspace, and let \(x \) be a vector in \(H \otimes K \). Let \(F \) be the smallest projection in \(L(H) \) such that \((F \otimes I)x = x \). Let \(P \) be the orthogonal projection onto \([\mathcal{S} \otimes H] \). Then \(P \otimes I \) is the orthogonal projection onto \([(\mathcal{S} \otimes L(K))x] \).

Proof. Let \(\{e_1, e_2, \ldots\} \) be any orthonormal basis for \(K \). Then there is a sequence \(\{x_i\} \) of vectors in \(H \) with \(\sum \|x_i\|^2 = \|x\|^2 \) such that \(x = \sum x_i \otimes e_i \). Let \(E_i \) be the projection onto \(Ce_i \). If \(S \in \mathcal{S}, \ T \in L(K) \), then \((S \otimes TE_i)x = Sx_i \otimes Te_i \). Hence \([\mathcal{S} \otimes L(K)]x \) contains all vectors of the form \(Sx_i \otimes y \) for arbitrary \(S \in \mathcal{S}, \ y \in K \), for each \(i \). Let \(F' \) be the projection onto the closed span of vectors \(\{x_i; i = 1, 2, \ldots\} \). Then \(F' \geq F \), and we have

\[
[(\mathcal{S} \otimes L(K))x] \supseteq [(\mathcal{S} \otimes L(K)) \otimes K] \supseteq [(\mathcal{S} \otimes L(K)) \otimes (FH \otimes K)] = [(\mathcal{S} \otimes L(K))(F \otimes K)] \supseteq [(\mathcal{S} \otimes L(K))x],
\]

so

\[
[(\mathcal{S} \otimes L(K))x] = [(\mathcal{S} \otimes L(K))(F \otimes K)] \supseteq [(\mathcal{S} \otimes L(K))x] \supseteq [(\mathcal{S} \otimes L(K))x].
\]

Lemma 6. Let \(H \) be a Hilbert space, let \(\mathcal{S} \subseteq L(H) \) be a linear subspace, and let \(h \in \mathcal{S}_1 \) be a rank-1 operator. Then \(hP = 0 \), where \(P \) is the orthogonal projection onto \([\mathcal{S} \otimes H] \).

Proof. Write \(h = v \otimes u \), where \(u, v \) are vectors such that \(hw = (w, v)u \), \(w \in H \). Then \([\mathcal{S} \otimes H] = [\mathcal{S} \otimes u] \). If \(S \in \mathcal{S} \) we have \(0 = \text{Tr}(Sh) = (Su, v) \), so \([\mathcal{S} \otimes u] \perp v \); hence \(Pv = 0 \). Then \(hP = (Pv) \otimes u = 0 \). \(\square \)

Lemma 7. Let \(\mathcal{S} \subseteq L(H), \mathcal{T} \subseteq L(K) \) be linear subspaces, and let \(\mathcal{R} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T} \). Let \(x \in H \otimes K \). Let \(F \in L(H), \ E \in L(K) \) be the smallest projections such that \(F \otimes I \) and \(I \otimes E \) contain \(x \) in their range, and let \(P \) be the projection onto \([\mathcal{S} \otimes H] \) and \(Q \) the projection onto \([\mathcal{T} \otimes K] \). The projection onto \([\mathcal{R}x] \) is then \((P \perp \otimes Q \perp) \perp \).

Proof. We have \([\mathcal{R}x] = [(\mathcal{S} \otimes L(K))x] \cup [(L(H) \otimes \mathcal{T})x] \). By Lemma 5, the projections onto \([(\mathcal{S} \otimes L(K))x] \) and \([(L(H) \otimes \mathcal{T})x] \) are \(P \otimes I \) and \(I \otimes Q \), respectively. The projection onto \([\mathcal{R}x] \) is then \((P \otimes I) \lor (I \otimes Q) \), and since \(P \otimes I \) and \(I \otimes Q \) commute this reduces to \(P \otimes I + I \otimes Q = P \otimes Q \). The orthogonal complement is then

\[
I \otimes I - P \otimes I - I \otimes Q + P \otimes Q = P \perp \otimes I - P \perp \otimes Q = P \perp \otimes Q \perp,
\]

so \(\text{proj} [\mathcal{R}x] = (P \perp \otimes Q \perp) \perp \). \(\square \)
If \(\mathcal{S} \) is a linear subspace of \(L(H) \), we adopt the notation \(\text{ref}(\mathcal{S}) \) to mean the smallest reflexive subspace of \(L(H) \) containing \(\mathcal{S} \). Thus \(\text{ref}(\mathcal{S}) = \{ T \in L(H): Tx \in \{ \mathcal{S}x \}, x \in H \} \).

Theorem 8. Let \(\mathcal{S} \subseteq L(H) \), \(\mathcal{T} \subseteq L(K) \) be reflexive subspaces. Then \(\mathcal{S} \star \mathcal{T} \) is the smallest reflexive subspace containing \(\mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T} \).

Proof. Let \(\mathcal{R} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T} \), and let \(\hat{\mathcal{R}} = \text{ref}(\mathcal{R}) \). By definition, \(\mathcal{R} \) and \(\hat{\mathcal{R}} \) have the same closed cyclic subspaces. Since \(\mathcal{S} \star \mathcal{T} \) is reflexive and contains \(\mathcal{R} \) it contains \(\hat{\mathcal{R}} \). To show equality, it will suffice to show that every rank-1 operator in \(\hat{\mathcal{R}} \) is in \((\mathcal{S} \star \mathcal{T})_\perp = \mathcal{S}_\perp \otimes \mathcal{T}_\perp \). Let \(h \) be a rank-1 operator in \(\mathcal{R}_\perp \), and let \(x \) be a nonzero vector in the range of \(h \). By Lemma 6, \(h = hG \), where \(G \) is the projection onto \([\mathcal{R}x] = [\mathcal{S}x] \). Let \(F \in L(H) \), \(E \in L(K) \) be the smallest projections such that \((F \otimes I)x = x = (I \otimes E)x \), and let \(P = \text{proj}[\mathcal{S}FH], \ Q = \text{proj}[\mathcal{T}EK] \). Then by Theorem 7, \(G = P \perp Q \). We have \((F \otimes E)x = x \); hence

\[
h = (F \otimes E)h = (F \otimes E)(P \perp Q) \in (F \otimes E)(\mathcal{L}_*(H \otimes K))(P \perp Q),
\]

where \(\mathcal{L}_*(H \otimes K) \) denotes the ideal of trace-class operators on \(H \otimes K \). Since \(\mathcal{L}_*(H \otimes K) \) is the trace-class norm closed span of elementary tensors \(\{ f \otimes g: f \in \mathcal{L}_*(H), g \in \mathcal{L}_*(K) \} \), the space \((F \otimes E)(\mathcal{L}_*(H \otimes K))(P \perp Q) \) is the closed span of elementary tensors \(\{(FP \perp) \otimes (EGQ \perp): f \in \mathcal{L}_*(H), g \in \mathcal{L}_*(K)\} \).

But for \(f \) arbitrary and \(S \in \mathcal{S} \), \(S \in \mathcal{T} \) we have \(\text{Tr}(SFFP \perp) = \text{Tr}(P \perp SFF) = 0 \) since \(P \perp SFF = 0 \). So \(FP \perp \in S_\perp \). Similarly, \(EGQ \perp \in \mathcal{T}_\perp \) for all \(g \in \mathcal{L}_*(K) \). So each \((FP \perp) \otimes (EGQ \perp) \in \mathcal{L}_\perp \otimes \mathcal{T}_\perp \), and hence \(h \in \mathcal{S}_\perp \otimes \mathcal{T}_\perp \). \(\square \)

Theorem 9. Let \(\mathcal{S} \subseteq L(H) \), \(\mathcal{T} \subseteq L(K) \) be reflexive proper subspaces. Then \(\mathcal{K}(\mathcal{S} \star \mathcal{T}) \geq \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{T}) \).

Proof. Let \(A \in L(H) \), \(B \in L(K) \) be arbitrary. By Proposition 4 we have \(d(A \otimes B, \mathcal{S} \star \mathcal{T}) = d(A, \mathcal{S}) \cdot d(B, \mathcal{T}) \). We will show that in general \(\alpha(A \otimes B, \mathcal{S} \star \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T}) \), and hence if \(A \in \mathcal{S} \) and \(B \in \mathcal{T} \) then \(\mathcal{K}(A \otimes B, \mathcal{S} \star \mathcal{T}) \geq \mathcal{K}(A, \mathcal{S}) \cdot \mathcal{K}(B, \mathcal{T}) \). Taking of suprema over all such \(A, B \) then yields \(\mathcal{K}(\mathcal{S} \star \mathcal{T}) \geq \mathcal{K}(\mathcal{S}) \cdot \mathcal{K}(\mathcal{T}) \), since by hypothesis \(\mathcal{S} \neq L(H) \) and \(\mathcal{T} \neq L(K) \).

We utilize Lemma 2. Let \(x \) be a unit vector in \(H \otimes K \). Let \(\mathcal{R} = \mathcal{S} \otimes L(K) + L(H) \otimes \mathcal{T} \). By Theorem 8, \(\mathcal{S} \star \mathcal{T} = \text{ref}(\mathcal{R}) \), so \(\mathcal{S} \star \mathcal{T} \) and \(\mathcal{R} \) have the same cyclic subspaces. As in the proof of Theorem 8, let \(G \) be the projection onto \([\mathcal{R}x] = [(\mathcal{S} \star \mathcal{T})_1] \), and let \(F \in L(H) \), \(E \in L(K) \) be the smallest projections such that \((F \otimes I)x = x \). Let \(P = \text{proj}[\mathcal{S}FH], \ Q = \text{proj}[\mathcal{T}EK] \). By Lemma 7, \(G = P \perp Q \). We have \((F \otimes E)x = x \); hence

\[
d[(A \otimes B)x, (\mathcal{S} \star \mathcal{T})_1] = \| G^{\perp} (A \otimes B) x \| = \| (P \perp Q) (A \otimes B) (F \otimes E) x \|
\]

\[
= \| (P \perp AF) \otimes (Q \perp BE) x \| \leq \| P \perp AF \| \cdot Q \perp BE \| \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T})
\]

since \(P \perp SF = 0 \) and \(Q \perp TE = 0 \).

Since \(x \) was an arbitrary unit vector, we have

\[
\alpha(A \otimes B, \mathcal{S} \star \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T}), \text{ as required.} \square
\]
The proof of Theorem 9 can be improved slightly to show that for arbitrary \(A \in \mathcal{L}(H) \), \(B \in \mathcal{L}(K) \) the inequality \(\alpha(A \otimes B, \mathcal{S} \otimes \mathcal{T}) \leq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T}) \) is in fact an equality. We capture this fact.

Corollary 10. Let \(\mathcal{S} \subseteq \mathcal{L}(H) \) and \(\mathcal{T} \subseteq \mathcal{L}(K) \) be reflexive subspaces, and let \(A \in \mathcal{L}(H) \), \(B \in \mathcal{L}(K) \) be arbitrary. Then \(\alpha(A \otimes B, \mathcal{S} \otimes \mathcal{T}) = \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T}) \).

Proof. The inequality “\(\leq \)" is contained in the proof of Theorem 9. For the converse, let \(F, P \in \mathcal{L}(H) \) and \(E, Q \in \mathcal{L}(K) \) be arbitrary projections satisfying \(P^\perp \mathcal{S} F = 0 \) and \(Q^\perp \mathcal{T} E = 0 \). Then if \(\mathcal{R} = \mathcal{S} \otimes \mathcal{L}(K) + \mathcal{L}(H) \otimes \mathcal{T} \), we have \((P^\perp \otimes Q^\perp)\mathcal{R}(F \otimes E) = 0 \), so since \(\mathcal{S} \otimes \mathcal{T} = \text{ref}(\mathcal{R}) \) by Theorem 8, we have \((P^\perp \otimes Q^\perp)\mathcal{S}(F \otimes E) = 0 \). Since \(||(P^\perp \otimes Q^\perp)(A \otimes B)(F \otimes E)|| = ||P^\perp AF|| \cdot ||Q^\perp BE|| \), we have

\[
\alpha(A \otimes B, \mathcal{S} \otimes \mathcal{T}) = \sup\{||L(A \otimes B) M|| : L, M \text{ are projections in } \mathcal{L}(H \otimes K) \text{ with } L(\mathcal{S} \otimes \mathcal{T}) M = 0\} \geq ||P^\perp AF|| \cdot ||Q^\perp BE||.
\]

So since \(P, F, Q, E \) were arbitrary, we conclude that \(\alpha(A \otimes B, \mathcal{S} \otimes \mathcal{T}) \geq \alpha(A, \mathcal{S}) \cdot \alpha(B, \mathcal{T}) \). Finally, we note that equality is trivially true if either \(\mathcal{S} = \mathcal{L}(H) \) or \(\mathcal{T} = \mathcal{L}(K) \). \(\square \)

From Corollary 10 and Proposition 4 we conclude that \(\mathcal{N}(A \otimes B, \mathcal{S} \otimes \mathcal{T}) = \mathcal{N}(A, \mathcal{S}) \cdot \mathcal{N}(B, \mathcal{T}) \) whenever \(\mathcal{S}, \mathcal{T} \) are reflexive proper subspaces with \(A \in \mathcal{S}, B \in \mathcal{T} \). That is, the basic inequality is an equality when restricted to the class of elementary tensors. It can happen, however, that for some operator \(T \in \mathcal{L}(H \otimes K) \), which is not an elementary tensor, we have \(\mathcal{N}(T, \mathcal{S} \otimes \mathcal{T}) > \mathcal{N}(\mathcal{S}) \cdot \mathcal{N}(\mathcal{T}) \), and thus the inequality in Theorem 9 may be strict. The following simple example shows this.

Example 11. Let

\[
S = \begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} : \lambda \in \mathbb{C} \right\}
\]

be regarded as a subspace of operators acting on 2-dimensional Hilbert space. An elementary computation shows that \(S \) is reflexive. An application of [6, Lemma 3.3] after interchanging rows, and either [4, Proposition 3 or 5, Theorems 1.1 or 1.2] to the preannihilator

\[
S_\perp = \begin{pmatrix} 0 & * \\ * & * \end{pmatrix},
\]

shows that \(\mathcal{N}(S) = 1 \). Since

\[
\mathcal{S}_\perp \otimes \mathcal{S}_\perp = \begin{pmatrix} 0 & 0 & 0 & * \\ 0 & 0 & * & * \\ 0 & * & 0 & * \\ * & * & * & * \end{pmatrix}
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
we have

\[
S \ast S = \begin{pmatrix}
\ast & \ast & \ast & 0 \\
\ast & \ast & 0 & 0 \\
\ast & 0 & \ast & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

acting on 4-dimensional Hilbert space. Let

\[
P = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Then \(P(S \ast S) \subseteq S \ast S \), and thus by \([5, \text{Lemma 1.3}]\) the compression \(P(S \ast S)|_{PH} \) is reflexive with hyperreflexivity constant no greater than that of \(S \ast S \). But this compression has diagram

\[
\begin{pmatrix}
\ast & 0 & 0 \\
0 & \ast & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

and by \([5, \text{Example 4.7}]\) this has constant \(\geq \sqrt{9/8} \). Thus \(\mathcal{N}(S \ast S) \geq \sqrt{9/8} > 1 = \mathcal{N}(S) \cdot \mathcal{N}(S) \). So in this case the inequality of Theorem 9 is strict. □

Theorem 12. Let \(n \) be a positive integer, and for \(1 < i < n \) let \(\mathcal{A}_i \) be a reflexive proper subalgebra of \(L(H_i) \) for \(H_i \) a separable Hilbert space. Suppose the tensor product \(\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \), acting on \(H = H_1 \otimes \cdots \otimes H_n \), is reflexive. Let

\[
\mathcal{A} = \begin{pmatrix}
\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n & \mathcal{A}_1 \ast \cdots \ast \mathcal{A}_n \\
0 & \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n
\end{pmatrix}.
\]

Then \(\mathcal{A} \) is a reflexive subalgebra of \(L(H \otimes H) \), and \(\mathcal{N}(\mathcal{A}) \geq \mathcal{N}(\mathcal{A}_1) \cdot \mathcal{N}(\mathcal{A}_2) \cdots \mathcal{N}(\mathcal{A}_n) \).

Proof. \(\mathcal{A} \) is an algebra since \(\mathcal{A}_1 \ast \cdots \ast \mathcal{A}_n \) is a bimodule over \(\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \). A simple calculation shows that

\[
\mathcal{A}_\perp = \begin{pmatrix}
(\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n)_{\perp} & L_*(H) \\
(\mathcal{A}_1 \ast \cdots \ast \mathcal{A}_n)_{\perp} & (\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n)_{\perp}
\end{pmatrix}.
\]

Since \(\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \) is reflexive, \((\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n)_{\perp} \) is generated by rank-1 operators. Since \(\mathcal{A}_1 \cdots \mathcal{A}_n \) are reflexive, \((\mathcal{A}_1 \ast \cdots \ast \mathcal{A}_n)_{\perp} = (\mathcal{A}_1)_{\perp} \otimes \cdots \otimes (\mathcal{A}_n)_{\perp} \) is also generated by rank-1 operators. Hence \(\mathcal{A}_\perp \) is generated by rank-1 operators, so \(\mathcal{A} \) is reflexive.

To show \(\mathcal{N}(\mathcal{A}) \geq \mathcal{N}(\mathcal{A}_1) \cdots \mathcal{N}(\mathcal{A}_n) \) we utilize \([4, \text{Proposition 3}]\). Let \(P \) be the orthogonal projection from \(H \otimes H \) onto \(H \). Let \(S = \mathcal{A}_1 \ast \cdots \ast \mathcal{A}_n \). By Theorem 9, \(\mathcal{N}(S) \geq \mathcal{N}(\mathcal{A}_1) \cdots \mathcal{N}(\mathcal{A}_n) \). Let \(\mathcal{G}_1(\mathcal{A}), \mathcal{G}_1(S) \) denote the closed convex hulls of the rank \(\leq 1 \) operators in the unit balls of \(\mathcal{A}_\perp, S \), respectively. Then clearly

\[
P \perp \mathcal{G}_1(\mathcal{A}) P = \begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}.
\]
Let $R(\mathcal{A})$, $R(S)$ be the largest radii such that \(\{ f \in \mathcal{A} : \|f\| \leq R(\mathcal{A}) \} \subseteq \mathcal{C}_1(\mathcal{A}) \) and \(\{ g \in S : \|g\| \leq R(S) \} \subseteq \mathcal{C}_1(S) \). It follows that $R(\mathcal{A}) \leq R(S)$. By [4, Proposition 3] we have $\mathcal{N}(\mathcal{A}) = 1/R(\mathcal{A})$ and $\mathcal{N}(S) = 1/R(S)$, so $\mathcal{N}(\mathcal{A}) \geq \mathcal{N}(S)$, as required. □

Remarks. The requirement that $\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n$ be reflexive will be met if each \mathcal{A}_i is finite dimensional, and more generally, if each \mathcal{A}_i has property S_n (Kraus [3]). (It is, of course, an open question whether the tensor product of reflexive algebras is necessarily reflexive.) As in the special case of the "key example" in [2], Theorem 12 gives a means of constructing reflexive algebras of arbitrarily large distance constant. If each \mathcal{A}_i is a CSL algebra and so contains a m.a.s.a., then \mathcal{A} will also contain a m.a.s.a., so will be a CSL algebra. A direct sum of such algebras, with increasing constants, will be nonhyperreflexive.

References

Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588