Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some generalized Brown-Gitler spectra


Authors: Paul G. Goerss, John D. S. Jones and Mark E. Mahowald
Journal: Trans. Amer. Math. Soc. 294 (1986), 113-132
MSC: Primary 55N20; Secondary 55S10, 55T15
DOI: https://doi.org/10.1090/S0002-9947-1986-0819938-3
MathSciNet review: 819938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Brown-Gitler spectra for the homology theories associated with the spectra $ K{{\mathbf{Z}}_p}^ \wedge $ , $ bo$, and $ bu$ are constructed. Complexes adapted to the new Brown-Gitler spectra are produced and a spectral sequence converging to stable maps into these spectra is constructed and examined.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalized homology, Univ. of Chicago Press, Chicago, III., 1974. MR 0402720 (53:6534)
  • [2] A. Bousfield et al., The $ \bmod p$ lower central series and the Adams spectral sequence, Topology 5 (1966), 331-342. MR 0199862 (33:8002)
  • [3] E. H. Brown and M. Comenetz, Pontrjagan duality for generalized homology and cohomology theories, Amer. J. Math. 9 (1976), 1-27. MR 0405403 (53:9196)
  • [4] E. H. Brown and S. Gitler. A spectrum whose cohomology is a certain cyclic module over the Steenrod Algebra, Topology 12 (1973), 283-295. MR 0391071 (52:11893)
  • [5] E. H. Brown and F. P. Peterson. On the stable decomposition of $ {\Omega ^2}{S^{r + 2}}$, Trans. Amer. Math. Soc. 243 (1978), 287-298. MR 0500933 (58:18424)
  • [6] R. L. Cohen, Odd primary infinite families in stable homotopy theory, Mem. Amer. Math. Soc. No. 242(1981). MR 603393 (82d:55011)
  • [7] D. Davis, Generalized homology and the generalized vector field problem, Quart. J. Oxford Ser. (2) 25 (1974), 169-193. MR 0356053 (50:8524)
  • [8] P. G. Goerss, Results on Brown-Gitler spectra, Thesis. MIT. 1983.
  • [9] R. M. Kane, Operations in connective $ K$-theory, Mem. Amer. Math. Soc. No. 254 ( 1981 ). MR 634210 (82m:55025)
  • [10] M. E. Mahowald, $ bo$-resolutions, Pacific J. Math. 92 (1982), 365-383.
  • [11] D. Shimanioto, An integral version of the Brown-Gitler spectrum, Thesis. Brandeis University. 1982.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N20, 55S10, 55T15

Retrieve articles in all journals with MSC: 55N20, 55S10, 55T15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0819938-3
Keywords: Brown-Gitler spectra, $ bo$, $ bu$
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society