Some generalized Brown-Gitler spectra

Authors:
Paul G. Goerss, John D. S. Jones and Mark E. Mahowald

Journal:
Trans. Amer. Math. Soc. **294** (1986), 113-132

MSC:
Primary 55N20; Secondary 55S10, 55T15

MathSciNet review:
819938

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Brown-Gitler spectra for the homology theories associated with the spectra , , and are constructed. Complexes adapted to the new Brown-Gitler spectra are produced and a spectral sequence converging to stable maps into these spectra is constructed and examined.

**[1]**J. F. Adams,*Stable homotopy and generalised homology*, University of Chicago Press, Chicago, Ill.-London, 1974. Chicago Lectures in Mathematics. MR**0402720****[2]**A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger,*The 𝑚𝑜𝑑-𝑝 lower central series and the Adams spectral sequence*, Topology**5**(1966), 331–342. MR**0199862****[3]**Edgar H. Brown Jr. and Michael Comenetz,*Pontrjagin duality for generalized homology and cohomology theories*, Amer. J. Math.**98**(1976), no. 1, 1–27. MR**0405403****[4]**Edgar H. Brown Jr. and Samuel Gitler,*A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra*, Topology**12**(1973), 283–295. MR**0391071****[5]**E. H. Brown Jr. and F. P. Peterson,*On the stable decomposition of Ω²𝑆^{𝑟+2}*, Trans. Amer. Math. Soc.**243**(1978), 287–298. MR**0500933**, 10.1090/S0002-9947-1978-0500933-4**[6]**Ralph L. Cohen,*Odd primary infinite families in stable homotopy theory*, Mem. Amer. Math. Soc.**30**(1981), no. 242, viii+92. MR**603393**, 10.1090/memo/0242**[7]**Donald Davis,*Generalized homology and the generalized vector field problem*, Quart. J. Math. Oxford Ser. (2)**25**(1974), 169–193. MR**0356053****[8]**P. G. Goerss,*Results on Brown-Gitler spectra*, Thesis. MIT. 1983.**[9]**Richard M. Kane,*Operations in connective 𝐾-theory*, Mem. Amer. Math. Soc.**34**(1981), no. 254, vi+102. MR**634210**, 10.1090/memo/0254**[10]**M. E. Mahowald, -*resolutions*, Pacific J. Math.**92**(1982), 365-383.**[11]**D. Shimanioto,*An integral version of the Brown-Gitler spectrum*, Thesis. Brandeis University. 1982.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
55N20,
55S10,
55T15

Retrieve articles in all journals with MSC: 55N20, 55S10, 55T15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1986-0819938-3

Keywords:
Brown-Gitler spectra,
,

Article copyright:
© Copyright 1986
American Mathematical Society