Existence and nonoscillation theorems for an Emden-Fowler equation with deviating argument

Author:
William F. Trench

Journal:
Trans. Amer. Math. Soc. **294** (1986), 217-231

MSC:
Primary 34K15; Secondary 34C15

MathSciNet review:
819944

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Sufficient conditions are given for a generalized Emden-Fowler equation with deviating argument to have nonoscillatory solutions with prescribed asymptotic behavior as . The integrability condition on the nonlinear term requires only conditional convergence, supplemented by a condition on the order of convergence, which is automatically satisfied in some important special cases. The exponent in the nonlinear term may be any real number. The deviating argument is not assumed to be purely advanced or retarded, and, in some cases, need not tend to infinity. Some of the results are global, in that the desired solution is shown to exist on a given interval, rather than only for sufficiently large .

**[1]**John R. Graef, Paul W. Spikes, and Myron K. Grammatikopoulos,*On the positive solutions of a higher order functional-differential equation with a discontinuity*, Internat. J. Math. Math. Sci.**5**(1982), no. 2, 263–273. MR**655511**, 10.1155/S0161171282000234**[2]**Thomas G. Hallam,*Asymptotic integrations of second order differential equations with integrable coefficients*, SIAM J. Appl. Math.**19**(1970), 430–439. MR**0269935****[3]**Philip Hartman,*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038****[4]**Takaŝi Kusano and Manabu Naito,*Nonlinear oscillation of second order differential equations with retarded argument*, Ann. Mat. Pura Appl. (4)**106**(1975), 171–185. MR**0415038****[5]**Takaŝi Kusano and Hiroshi Onose,*Nonlinear oscillation of second order functional differential equations with advanced argument*, J. Math. Soc. Japan**29**(1977), no. 3, 541–559. MR**0440164****[6]**Takaŝi Kusano and Charles A. Swanson,*Asymptotic properties of semilinear elliptic equations*, Funkcial. Ekvac.**26**(1983), no. 2, 115–129. MR**736896****[7]**Takaŝi Kusano and William F. Trench,*Global existence theorems for solutions of nonlinear differential equations with prescribed asymptotic behaviour*, J. London Math. Soc. (2)**31**(1985), no. 3, 478–486. MR**812777**, 10.1112/jlms/s2-31.3.478**[8]**-,*Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations*, Ann. Mat. Pura Appl. (to appear).**[9]**Manabu Naito,*Asymptotic behavior of solutions of second order differential equations with integrable coefficients*, Trans. Amer. Math. Soc.**282**(1984), no. 2, 577–588. MR**732107**, 10.1090/S0002-9947-1984-0732107-9**[10]**Zeev Nehari,*On a class of nonlinear second-order differential equations*, Trans. Amer. Math. Soc.**95**(1960), 101–123. MR**0111898**, 10.1090/S0002-9947-1960-0111898-8**[11]**Ezzat S. Noussair and Charles A. Swanson,*Global positive solutions of semilinear elliptic equations*, Canad. J. Math.**35**(1983), no. 5, 839–861. MR**735900**, 10.4153/CJM-1983-048-4**[12]**Steven Taliaferro,*On the positive solutions of 𝑦′′+𝜙(𝑡)𝑦^{-𝜆}=0*, Nonlinear Anal.**2**(1978), no. 4, 437–446. MR**512480**, 10.1016/0362-546X(78)90050-0**[13]**William F. Trench,*Asymptotic integration of linear differential equations subject to integral smallness conditions involving ordinary convergence*, SIAM J. Math. Anal.**7**(1976), no. 2, 213–221. MR**0402214****[14]**William F. Trench,*Asymptotic integration of 𝑦⁽ⁿ⁾+𝑃(𝑡)𝑦^{𝛾}=𝑓(𝑡) under mild integral smallness conditions*, Funkcial. Ekvac.**26**(1983), no. 2, 197–209. MR**736901****[15]**William F. Trench,*Asymptotic integration of linear differential equations subject to mild integral conditions*, SIAM J. Math. Anal.**15**(1984), no. 5, 932–942. MR**755853**, 10.1137/0515070**[16]**William F. Trench,*Asymptotic behavior of solutions of an 𝑛th order differential equation*, Rocky Mountain J. Math.**14**(1984), no. 2, 441–450. MR**747291**, 10.1216/RMJ-1984-14-2-441**[17]**William F. Trench,*Functional perturbations of second order differential equations*, SIAM J. Math. Anal.**16**(1985), no. 4, 741–756. MR**793919**, 10.1137/0516056

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34K15,
34C15

Retrieve articles in all journals with MSC: 34K15, 34C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0819944-9

Keywords:
Emden-Fowler nonoscillatory equation,
asymptotic,
global existence,
local existence

Article copyright:
© Copyright 1986
American Mathematical Society