Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space

Authors:
Ralph Howard and S. Walter Wei

Journal:
Trans. Amer. Math. Soc. **294** (1986), 319-331

MSC:
Primary 58E20

MathSciNet review:
819950

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Call a compact Riemannian manifold a strongly unstable manifold if it is not the range or domain of a nonconstant stable harmonic map and also the homotopy class of any map to or from contains elements of arbitrarily small energy. If is isometrically immersed in Euclidean space, then a condition on the second fundamental form of is given which implies is strongly unstable. As compact isotropy irreducible homogeneous spaces have "standard" immersions into Euclidean space this allows a complete list of the strongly unstable compact irreducible symmetric spaces to be made.

**[Ch]**Bang-yen Chen,*Geometry of submanifolds*, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 22. MR**0353212****[EL]**James Eells and Luc Lemaire,*Selected topics in harmonic maps*, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR**703510****[ES]**James Eells Jr. and J. H. Sampson,*Harmonic mappings of Riemannian manifolds*, Amer. J. Math.**86**(1964), 109–160. MR**0164306****[L]**H. B. Lawson,*Lectures on minimal submanifolds*, Vol. 1, Publish or Perish, Berkeley, Calif., 1980.**[Lg]**Pui Fai Leung,*On the stability of harmonic maps*, Harmonic maps (New Orleans, La., 1980) Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, pp. 122–129. MR**673586****[LS]**H. Blaine Lawson Jr. and James Simons,*On stable currents and their application to global problems in real and complex geometry*, Ann. of Math. (2)**98**(1973), 427–450. MR**0324529****[M]**Min-Oo,*Maps of minimum energy from compact simply-connected Lie groups*, Ann. Global Anal. Geom.**2**(1984), no. 1, 119–128. MR**755212**, 10.1007/BF01871948**[N]**T. Nagano,*Stability of harmonic maps between symmetric spaces*, Harmonic maps (New Orleans, La., 1980) Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, pp. 130–137. MR**673587****[S]**R. T. Smith,*The second variation formula for harmonic mappings*, Proc. Amer. Math. Soc.**47**(1975), 229–236. MR**0375386**, 10.1090/S0002-9939-1975-0375386-2**[Sp]**M. Spivak,*A comprehensive introduction to differential geometry*, Publish or Perish, Berkeley, Calif., 1979.**[SU]**J. Sacks and K. Uhlenbeck,*The existence of minimal immersions of 2-spheres*, Ann. of Math. (2)**113**(1981), no. 1, 1–24. MR**604040**, 10.2307/1971131**[W]**Brian White,*Infima of energy functionals in homotopy classes of mappings*, J. Differential Geom.**23**(1986), no. 2, 127–142. MR**845702****[X]**Y. L. Xin,*Some results on stable harmonic maps*, Duke Math. J.**47**(1980), no. 3, 609–613. MR**587168**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E20

Retrieve articles in all journals with MSC: 58E20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0819950-4

Keywords:
Instability of harmonic maps,
symmetric spaces

Article copyright:
© Copyright 1986
American Mathematical Society