ABSTRACT. In this paper the authors prove the following theorem:

Let Ω be a smooth strictly convex bounded domain in \mathbb{R}^n and $V: \Omega \to \mathbb{R}$ a nonnegative convex function. Suppose λ_1 and λ_2 are the first and second nonzero eigenvalues of the equation

$$-\Delta f + Vf = \lambda f, \quad f|_{\partial\Omega} \equiv 0.$$

Then $\lambda_2 - \lambda_1 \geq \pi^2/d^2$, where d is the diameter of Ω.

Let $\Omega \subset \mathbb{R}^n$ be a smooth strictly convex bounded domain and $W: \Omega \to \mathbb{R}$ a nonnegative convex smooth function. The eigenvalues of the equation

(1) $$-\Delta f + Wf = \lambda f, \quad f = 0, \quad \text{on} \partial\Omega$$

can be arranged in nondecreasing order as follows:

$$0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots.$$

(2) $$\lambda_2 - \lambda_1 \geq \pi^2/4d^2,$$

where d is the diameter of Ω. In this paper the authors will use the method of [3 and 4] to prove the following theorem:

THEOREM. Let Ω be a smooth strictly convex bounded domain in \mathbb{R}^n and $W: \Omega \to \mathbb{R}$ a nonnegative convex function. Suppose λ_1 and λ_2 are the first and second nonzero eigenvalues of (1). Then

(3) $$\lambda_2 - \lambda_1 \geq \pi^2/d^2,$$

where d is the diameter of Ω.

The authors are grateful to Professor S.-T. Yau for his kind direction and help, and to The Institute for Advanced Study, Princeton, N.J., for its support.

In this paper the assumptions of all the lemmas are the same as those of the Theorem. We will not state them again.

Let f_1 and f_2 be the first and second eigenfunctions of (1); then $f_1(x) > 0, x \in \Omega$ [2], and $u = f_2/f_1$ is smooth to the boundary of Ω [3]. Suppose that

$$A = \max_{x \in \Omega} u(x); \quad -k = \min_{x \in \Omega} u(x).$$

Received by the editors April 24, 1985.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C20.

©1986 American Mathematical Society

0002-9947/86 $1.00 + .25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

341
We may assume that $A \geq k$, otherwise, we can use $-f_2$ instead of f_2.

Since $\int_{\Omega} f_1 f_2 = 0$ and $f_1 > 0$, $k > 0$. Setting $\hat{u} = u/A$, we have $1 \geq \hat{u} \geq -k/A = -\hat{k}$ and $1 \geq \hat{k} > 0$;

$$v = \left(\hat{u} - \frac{1 - \hat{k}}{2} \right) \left(\frac{1 + \hat{k}}{2} \right)$$

and

$$a = \frac{1 - \hat{k}}{1 + \hat{k}}; \quad 1 > a \geq 0.$$

Then v is a smooth function on $\bar{\Omega}$. By computing, we have

$$\Delta v = -\lambda(v + a) - 2(\nabla v \cdot \nabla \log f_1),$$

where λ is $\lambda_2 - \lambda_1 > 0$.

Lemma 1. Let $z(v)$ be a smooth function defined on $\bar{\Omega}$ and $m > 0$ a constant. Suppose that

$$G(x) = m|\nabla v|^2 = z(v),$$

$P \in \partial\Omega$ and $G(P) = \max_{x \in \bar{\Omega}} G(x)$. Then $\nabla v(P) = 0$.

Proof. We can choose an orthonormal frame l_1, l_2, \ldots, l_n around P such that l_1 is perpendicular to $\partial\Omega$ and pointing outward. We also use the notation $\partial/\partial x_i$ to denote the restriction of l_i on $\partial\Omega$. Since $G(P)$ is the maximum of $G(x)$,

$$0 \leq \frac{\partial G}{\partial x_1} (P) = 2m \sum_{i=1}^{n} v_i v_{11} + z' v_1.$$

Furthermore, in $\Delta v = -\lambda(v + a) - 2(\nabla v \cdot \nabla \log f_1)$, v and Δv are all smooth on $\bar{\Omega}$; hence

$$\nabla v \cdot \nabla \log f_1 = \frac{1}{f_1} \left[v_1 (f_1)_1 \sum_{i=2}^{n} v_i (f_1)_i \right]$$

achieves finite value on $\partial\Omega$. But $f_1|_{\partial\Omega} \equiv 0$, thus

$$\left. \left[v_1 (f_1)_1 \sum_{i=2}^{n} v_i (f_1)_i \right] \right|_{\partial\Omega} \equiv 0.$$

Since $f_1 \equiv 0$ and $\partial\Omega$ and l_i, $2 \leq i \leq n$, are the tangent vectors of $\partial\Omega$, $(f_1)_i|_{\partial\Omega} \equiv 0$, $2 \leq i \leq n$. Hence,

$$v_1 (f_1)_1 \equiv 0 \quad \text{on} \quad \partial\Omega.$$

By Hopf’s lemma, $\partial f_1/\partial x_1 \neq 0$. Therefore,

$$v_1 \equiv 0 \quad \text{on} \quad \partial\Omega.$$

Putting (9) into (8), we have

$$0 \leq m \sum_{i=2}^{n} v_i v_{11} (P) = \frac{\partial G}{\partial x_1} (P).$$
From the definition of the second fundamental form in R^n, we have (note $v_1 = 0$)

$$v_{1i} = -\sum_{j=2}^{n} h_{ij} v_j,$$

where (h_{ij}) is the second fundamental form. Putting (11) into (10), we obtain

$$0 \leq -\sum_{i,j=2}^{n} mh_{ij} v_i v_j (P).$$

Since Ω is strictly convex, (h_{ij}) is positive definite; thus

$$0 \leq -m \sum_{i,j=2}^{n} h_{ij} v_i v_j (P) \leq 0.$$

Hence, $v_i (P) = 0$, $2 \leq i \leq n$, i.e., $\nabla v (P) = 0$.

Lemma 2. For any given $b > 1$,

$$\frac{\lvert \nabla v \rvert^2}{b^2 - v^2} \leq \lambda (1 + a).$$

Proof. For $\epsilon > 0$, consider the function defined on $\overline{\Omega}$

$$G(x) = \lvert \nabla v \rvert^2 + \lambda (1 + \epsilon + a) v^2.$$

Suppose $G (P) = \max_{x \in \overline{\Omega}} G (x)$. If $P \in \partial \Omega$, by Lemma 1, we have $\nabla v (P) = 0$ and

$$0 \leq 2b \Delta G (P) = 2b \lvert \nabla v \rvert^2 - 2 \nabla v \cdot \nabla (\nabla v \cdot \nabla \log f_1) - \lambda^2 (1 + \epsilon + a) v (v + a)$$

If $\nabla v (P) = 0$, then (12) is valid. If $\nabla v (P) \neq 0$, we can choose an orthonormal frame such that $v_i (P) = 0$, $2 \leq i \leq n$, and $v_1 (P) \neq 0$. (13) gives

$$v_{i1} = -\lambda (1 + \epsilon + a) v, \quad v_{1i} = 0, \quad 2 \leq i \leq n.$$
Putting (15) into (14), we obtain
\[0 \geq v_1^2 + (\epsilon + a)\lambda|\nabla v|^2 - 2v_1(\nabla v \cdot \nabla \log f_1) - \lambda^2(1 + \epsilon + a)v^2\]
\[- \lambda^2(1 + \epsilon + a)av - 2\lambda(1 + \epsilon + a)v(\nabla v \cdot \nabla \log f_1)\]
\[= \lambda^2(1 + \epsilon + a)^2v^2 + (\epsilon + a)\lambda|\nabla v|^2 - \lambda^2(1 + \epsilon + a)av\]
\[-2\sum_{i=1}^{n} v_i v_{i1}(\log f_1)i - 2\sum_{i=1}^{n} v_i v_{i1}(\log f_1)i_1\]
\[-2(1 + \epsilon + a)v(\log f_1)i\]
\[= \lambda(\epsilon + a)G(P) - \lambda^2(1 + \epsilon + a)av + 2v_1(1 + \epsilon + a)v(\log f_1)\]
\[-2v^2(\log f_1)_{11} - 2(1 + \epsilon + a)v_1(\log f_1)\]
\[= \lambda(\epsilon + a)G(P) - \lambda^2(1 + \epsilon + a)av + 2v^2(\log f_1)_{11}.
\]
Hence
\[(16) \quad 0 \geq \lambda(\epsilon + a)G(P) - \lambda^2(1 + \epsilon + a)av - 2v^2(\log f_1)_{11}.
\]
Since W and Ω are all convex, $\log f_1$ is concave [1], in particular, $-(\log f_1)_{11}(P) \geq 0$. Noting that $v \leq 1$, we have
\[(17) \quad \lambda(1 + \epsilon + a)G(x) \leq \lambda(1 + \epsilon + 1)\frac{a}{\epsilon + a} \leq \lambda(1 + \epsilon + a).
\]
From (12) and (17) we can obtain that $G(x) \leq (1 + \epsilon + a)\lambda$, $x \in \Omega$. This is
\[|\nabla v|^2 \leq \lambda(1 + \epsilon + a)(1 - v^2) \leq \lambda(1 + \epsilon + a)(b^2 - v^2).
\]
Letting $\epsilon \to 0$, we complete the proof of the lemma. Q.E.D.

Lemma 3. $\lambda \geq 1/(1 + a) \cdot \pi^2/d^2$.

Proof. By Lemma 2, we have
\[(18) \quad \frac{|\nabla (v/b)|}{\sqrt{1 - (v/d)^2}} \leq \lambda^{1/2}(1 + a)^{1/2}.
\]
Suppose that q_1 and $q_2 \in \Omega$ such that $v(q_1) = 1$, $v(q_2) = -1$, and let L be the line segment between q_1 and q_2. L lies on Ω completely, because it is convex. We integrate both sides of (18) along L from q_2 to q_1 and obtain
\[\lambda^{1/2}(1 + a)^{1/2}d \geq \lambda^{1/2}(1 + a)^{1/2}length of L \geq \arcsin \frac{1}{b} - \arcsin \frac{-1}{b}.
\]
For any $b > 1$, (19) is valid and, letting $b \to 1$, the lemma is completely proved. Q.E.D.

If $a = 0$, then the Theorem is proved. Now suppose $a > 0$. From Lemma 2
\[\frac{|\nabla (v/b)|^2}{1 - (v/b)^2} \leq \lambda(1 + a), \quad b > 1.
\]
Set $\theta: \Omega \to R$, $\theta = \arcsin(v/b)$, $\arcsin(-1/b) \leq \theta \leq \arcsin(1/b)$. Then
\[\frac{|\nabla (v/b)|^2}{1 - (v/b)^2} = |\nabla \theta|^2 \leq \lambda(1 + a).
\]
Obviously, $\nabla \theta = 0$ if $v = 0$. Define $F: [\arcsin -1/b, \arcsin 1/b] \to R$ as
\begin{equation}
F(\theta_0) = \max_{x \in \Omega \atop \theta(x) = \theta_0} \frac{|\nabla(v/b)|^2}{1 - (v/b)^2}.
\end{equation}

$F(\theta_0(x))$ is continuous on $\bar{\Omega}$ and
\begin{equation}
F(\theta_0) \leq \lambda(1 + a), \quad \theta_0 \in [\arcsin -1/b, \arcsin 1/b].
\end{equation}

For any $\theta_0 \in [\arcsin -1/b, \arcsin 1/b]$ there must be an $x_0 \in \bar{\Omega}$ such that
\begin{equation}
\theta(x_0) = \theta_0 \quad \text{and} \quad F(\theta_0) = \frac{|\nabla(v/b)|^2}{1 - (v/b)^2}(x_0)
\end{equation}
are valid. Since $a > 0$, we can define a continuous function φ on $\bar{\Omega}$ which satisfies
\begin{equation}
F(\theta) \equiv \lambda \left(1 + \frac{a}{b} \varphi(\theta)\right), \quad \varphi(\theta) \leq b.
\end{equation}

LEMMA 4. The C^∞ function $y: [\arcsin -1/b, \arcsin 1/b] \to R$ satisfies
(i) $y(\theta) \geq \varphi(\theta)$, $\theta \in [\arcsin -1/b, \arcsin 1/b]$;
(ii) there is an $x_0 \in \bar{\Omega}$ such that $\theta(x_0) = \theta_0$ and $y(\theta_0) = \varphi(\theta_0)$;
(iii) $y(\theta) \geq -1$ for any $\theta \in [\arcsin -1/b, \arcsin 1/b]$;
(iv) $y'(\theta_0) \geq 0$.

Then the following inequality is valid:
\begin{equation}
\varphi(\theta_0) \leq \sin \theta_0 - y'(\theta_0) \sin \theta_0 \cos \theta_0 + \frac{1}{2} y''(\theta_0) \cos^2 \theta_0.
\end{equation}

PROOF. Consider the function $\Phi(x): \bar{\Omega} \to R$,
\begin{equation}
\Phi(x) = \left\{ \frac{|\nabla v|^2}{b^2 - v^2} - \lambda(1 + cy) \right\} \cos^2 \theta,
\end{equation}
where $b > 1$ and $c = a/b$. Obviously, $\Phi(x) \leq 0$ for $x \in \bar{\Omega}$ and $\Phi(x_0) = 0$, i.e., $\Phi(x)$ attains its maximum at x_0, since
\begin{equation}
\Phi(x) = \frac{1}{b^2} |\nabla v|^2 - \lambda \left(1 - \frac{v^2}{b^2}\right)(1 + cy).
\end{equation}

If $\nabla v(x_0) = 0$, then
\begin{equation}
0 = \Phi(x_0) = -\lambda(1 - v^2/b^2)(1 + cy)|_{x_0}
\end{equation}
and
\begin{equation}
y(x_0) = -1/c = -a/b < -1.
\end{equation}

This contradicts the assumption (iii). Thus $\nabla v(x_0) \neq 0$. By Lemma 1, $x_0 \notin \partial\Omega$, i.e., $x_0 \in \Omega$. According to the maximum principle, we have
\begin{equation}
\nabla \Phi(x_0) = 0,
\end{equation}
\begin{equation}
\Delta \Phi(x_0) \leq 0.
\end{equation}

For convenience we write $\Phi(x)$ as
\begin{equation}
\Phi(x) = \frac{1}{b^2} |\nabla v|^2 - \cos^2 \theta(1 + cy).
\end{equation}
Then

\[\Phi_j = \frac{1}{b^2} \sum_i v_i v_{ij} - \lambda (1 + cy)(-2 \cos \theta \sin \theta) \theta_j - c \lambda \cos^2 \theta \theta'_j. \]

(22) gives that at \(x_0 \)

\[
(22') \quad \frac{2}{b^2} \sum_i v_i v_{ij} = \lambda [cy' \cos^2 \theta - 2(1 + cy) \cos \theta \sin \theta] \theta_j, \quad 1 \leq j \leq n.
\]

And also

\[
\Delta \Phi = \frac{2}{b^2} \sum_{i,j} v_{ij}^2 + \frac{2}{b^2} \nabla v \cdot \nabla (\Delta v) - \lambda c \cos^2 \theta \Delta y
\]

\[- \lambda (1 + cy) \Delta \cos^2 \theta - 2 \lambda c \nabla \cos^2 \theta \cdot \nabla y
\]

\[
= \frac{2}{b^2} \sum_{i,j} v_{ij}^2 + \frac{2}{b^2} \nabla v \cdot \nabla (\Delta v) - \lambda c \cos^2 \theta (y''|\nabla \theta|^2 + y' \Delta \theta)
\]

\[+ 4 \lambda cy' \cos \theta \sin \theta |\nabla \theta|^2 - \lambda (1 + cy) \Delta \cos^2 \theta.
\]

From (23) we have that at \(x_0 \)

\[
0 \geq \frac{2}{b^2} \sum_{i,j} v_{ij}^2 + \frac{2}{b^2} \nabla v \cdot \nabla (\Delta v) - \lambda c \cos^2 \theta (y''|\nabla \theta|^2 + y' \Delta \theta)
\]

\[+ 4 \lambda cy' \cos \theta \sin \theta |\nabla \theta|^2 - \lambda (1 + cy) \Delta \cos^2 \theta.
\]

Since \(\nabla v(x_0) \neq 0 \), we can choose an orthonormal frame such that \(v_1(x_0) \neq 0 \) and \(v_i(x_0) = 0, \ 2 \leq i \leq n \). Then by \((22') \) (note \(\sin \theta = v/b, \ \theta_j = v_j/b \cos \theta \))

\[
v_i = 0, \quad 2 \leq i \leq n,
\]

\[
v_{11} = (b/2) \lambda [cy' \cos \theta - 2(1 + cy) \sin \theta].
\]

Now we compute the terms in \((23') \) at the particular frame

\[
\nabla v \cdot \nabla (\Delta v)_{x_0} = \sum_{i,j} v_i v_{jj} = \sum_j v_1 (v_{jj})_1
\]

\[
= v_1 \left[-\lambda (v + a) - 2 \sum_i v_i (\log f_1)_i \right]
\]

\[
= -\lambda v_1^2 - 2v_1 \sum_i v_{1i} (\log f_1)_i - 2v_1 \sum_i v_i (\log f_1)_{1i}
\]

\[
= -\lambda v_1^2 + 2v_1 v_{11} (\log f_1)_1 = 2v_1^2 (\log f_1)_{11} \quad (\because \ (24)).
\]

From \(\Delta v/b = \Delta \sin \theta = \cos \theta \Delta \theta - \sin \theta |\nabla \theta|^2 \), we have

\[
\Delta \theta = \frac{1}{\cos \theta} \left[\frac{\Delta v}{b} + \sin \theta |\nabla \theta|^2 \right].
\]

And

\[
\Delta \cos \theta = \Delta \left(1 - \frac{v^2}{b^2} \right) = -\frac{1}{b^2} \Delta v^2 = -\frac{2}{b^2} (v \Delta v + |\nabla v|^2)
\]

\[
= -\frac{2}{b^2} v \Delta v - 2 \cos^2 \theta |\nabla \theta|^2.
\]
From $\Phi(x_0) = 0$, we have at x_0

\[|\nabla \theta|^2 = \frac{1}{b^2 \cos^2 \theta} |\nabla v|^2 = \frac{1}{b^2 (1 - (v/b)^2)} |\nabla v|^2 = \frac{|\nabla v|^2}{b^2 - v^2} = \lambda(1 + cy). \]

Putting (25)–(28) into (23'), we obtain that at x_0

\[0 \geq \frac{2}{b^2} \sum_{i,j} v_{ij}^2 + \frac{2}{b^2} \left[\frac{\Delta v}{b \cos \theta} + \frac{\sin \theta}{\cos \theta} \right] \lambda(1 + cy) \cos^2 \Theta \]

\[- \lambda c \left[\lambda y''(1 + cy) + y' \left(\frac{\Delta v}{b \cos \theta} + \frac{\sin \theta}{\cos \theta} \right) \lambda(1 + cy) \cos^2 \theta \right. \]

\[+ 4(1 + cy)\lambda^2 c y' \cos \theta \sin \theta - \lambda(1 + cy) \left[-\frac{2}{b^2} v \Delta v - 2\lambda \cos^2 \theta (1 + cy) \right]. \]

Since $|\nabla v|^2 = \nu_1^2 = b^2 \cos^2 \theta |\nabla \theta|^2 = \lambda^2 \cos^2 \theta (1 + cy)$ (: (28)) and $\Delta v = -\lambda(v + a) - 2v \nabla \cdot \nabla \log f_1$, (29) can be written as

\[0 \geq \frac{2}{b^2} \sum_{i,j} v_{ij}^2 - 2\lambda^2 (1 + cy) \cos^2 \theta - \lambda^2 c y''(1 + cy) \cos^2 \theta \]

\[+ 2\lambda^2 c y' \cos \theta (\sin \theta + c) + 3\lambda c y(1 + cy) \sin \theta \cos \theta \]

\[+ 2\lambda(1 + cy)^2 \cos^2 \theta - 2\lambda^2 (1 + cy) \sin \theta (\sin \theta + c) \]

\[- \frac{4}{b^2} v_1^2 (\log f_1)_{11} - \frac{4}{b^2} v_1 v_{11} (\log f_1)_{11} \]

\[+ \frac{2}{b} \lambda [c y' \cos \theta - 2(1 + cy) \sin \theta] v_1 (\log f_1). \]

Putting the second formula of (24) into the above inequality and noting that $(\log f_1)_{11} \leq 0$, we have

\[0 \geq \frac{1}{2} \lambda^2 c^2 (y')^2 \cos^2 \theta + 2\lambda^2 (1 + cy)^2 - 2\lambda^2 (1 + cy) \cos^2 \theta \]

\[+ \lambda^2 c y'[(1 + cy) \sin \theta \cos \theta + \cos \theta (\sin \theta + c)] \]

\[- \lambda^2 c (1 + cy) y'' \cos^2 \theta - 2\lambda^2 (1 + cy) \sin \theta (\sin \theta + c). \]

Dividing both sides of the above inequality by $\lambda^2 (1 + cy) > 0$, we have

\[0 \geq y' \left(\sin \theta \cos \theta + \cos \frac{\sin \theta + c}{1 + cy} \right) - y'' \cos^2 \theta + \frac{2}{c} (1 + cy) - \frac{2}{c} - 2 \sin \theta, \]

\[2y - 2 \sin \theta \leq y'' \cos^2 \theta - y' \left(\sin \theta \cos \theta + \cos \frac{\sin \theta + c}{1 + cy} \right). \]

Since $-1 \leq y(\theta_0) = \varphi(\theta_0) \leq b$, thus,

\[|y(\theta_0)| \leq b, \quad y(\theta_0) \sin \theta_0 \leq |y(\theta_0)| \sin \theta_0 | \sin \theta_0 | \leq bv(\theta_0)/b \leq 1 \]

and

\[c \geq cy \sin \theta, \quad c + \sin \theta \geq (1 + cy) \sin \theta, \quad \frac{c + \sin \theta}{1 + cy} \geq \sin \theta. \]

Since $y'(\theta_0) \geq 0$, we have

\[\varphi(\theta_0) = y(\theta_0) \leq \sin \theta_0 - y'(\theta_0) \sin \theta_0 \cos \theta_0 + \frac{1}{2} y''(\theta_0) \cos^2 \theta_0. \]
LEMMA 5. Define a function $\psi: [-\pi/2, \pi/2] \to R$ as
\[
\psi(\theta) = \frac{(4/\pi)(\theta + \cos \theta \sin \theta) - 2 \sin \theta}{\cos^2 \theta}, \quad \theta \in (-\pi/2, \pi/2),
\]
\[
\psi(-\pi/2) = -1, \quad \psi(\pi/2) = 1.
\]
Then ψ is a C^∞ function in $(-\pi/2, \pi/2)$ and is continuous on $[-\pi/2, \pi/2]$ and also $y = \psi(\theta)$ satisfies the following equation:
\[
y - \sin \theta + y' \sin \theta \cos \theta - \frac{1}{2} y'' \cos^2 \theta = 0,
\]
and $y'(\theta) \geq 0, \theta \in (-\pi/2, \pi/2)$.

PROOF. See reference [4].

LEMMA 6. Let $\varphi(\theta)$ be the function defined by (21). Then
\[
\varphi(\theta) \leq \psi(\theta), \quad \theta \in \left[\arcsin \frac{-1}{b}, \arcsin \frac{1}{b}\right],
\]
where $\psi(\theta)$ is defined by (30).

PROOF. We will use the reduction to absurdity. If
\[
\sigma = \varphi(\theta_0) - \psi(\theta_0) = \max_\theta \{\varphi(\theta) - \psi(\theta)\} > 0
\]
we could choose $\psi(\theta) + \sigma = \tilde{y}$ as y in Lemma 4. Therefore,
\[
\varphi(\theta_0) = \tilde{y}(\theta_0) = \psi(\theta_0) + \sigma \leq \sin \theta_0 - \psi'(\theta_0) \sin \theta_0 \cos \theta_0 + \frac{1}{2} \psi''(\theta_0) \cos^2 \theta_0 = \psi(\theta_0).
\]
This contradicts (32). Q.E.D.

PROOF OF THE THEOREM. By Lemma 6, we have
\[
|\nabla \theta|^2 = \frac{|\nabla \psi|^2}{b^2 - \psi^2} \leq \lambda \left(1 + \frac{a}{b} \psi(\theta)\right),
\]
where $\psi(\theta)$ is the function defined by (30). Hence,
\[
\lambda^{1/2} \geq \frac{|\nabla \theta|}{\sqrt{1 + (a/b)\psi(\theta)}}.
\]
Obviously,
\[
\psi(0) = 0, \quad \psi(-\theta) = -\psi(\theta).
\]
Integrating both sides of (33) as in Lemma 3, we obtain
\[
\lambda^{1/2} d \geq \int_{\arcsin -1/b}^{\arcsin 1/b} \frac{d\theta}{\sqrt{1 + (a/b)\psi(\theta)}} = \int_{0}^{\arcsin 1/b} \left(\frac{1}{\sqrt{1 + (a/b)\psi(\theta)}} + \frac{1}{\sqrt{1 - (a/b)\psi(\theta)}}\right) d\theta.
\]
Since $|\pm (a/b)\psi(\theta)| \leq 1$,
\[
\frac{1}{\sqrt{1 + (a/b)\psi(\theta)}} + \frac{1}{\sqrt{1 - (a/b)\psi(\theta)}} = 2 \left[1 + \sum_{p=1}^{\infty} \frac{1 \cdot 3 \cdots (4p-1)}{2 \cdot 4 \cdots (4p)} \left(\frac{a}{b}\right)^{2p} \psi^{2p}\right] \geq 2.
\]
Thus
\[
\lambda^{1/2} d \geq 2 \arcsin \frac{1}{b}, \quad \lambda \geq \frac{4}{d^2} \left(\arcsin \frac{1}{b}\right)^2.
\]
Letting $b \to 1$, we obtain $\lambda \geq \pi^2/d^2$. Q.E.D.
REFERENCES

SCHOOL OF MATHEMATICS, THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

Current address: Institute of Applied Mathematics, Academia Sinica, Beijing, People’s Republic of China