Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The law of the iterated logarithm in uniformly convex Banach spaces


Author: Michel Ledoux
Journal: Trans. Amer. Math. Soc. 294 (1986), 351-365
MSC: Primary 60B12; Secondary 60B11
DOI: https://doi.org/10.1090/S0002-9947-1986-0819953-X
MathSciNet review: 819953
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give necessary and sufficient conditions for a random variable $ X$ with values in a uniformly convex Banach space $ B$ to satisfy the law of the iterated logarithm. Precisely, we show that a $ B$-valued random variable $ X$ satisfies the (compact) law of the iterated logarithm if and only if $ E\{ \vert\vert X\vert{\vert^2}/{L_2}\vert\vert X\vert\vert\} < \infty $, the family $ \{ \vert{x^{\ast}}(X){\vert^2};\,{x^{\ast}} \in {B^{\ast}},\,\vert\vert{x^{\ast}}\vert\vert = 1\} $ is uniformly integrable and $ {S_n}/{a_n} \to 0$ in probability.


References [Enhancements On Off] (What's this?)

  • [1] A. de Acosta and J. Kuelbs, Some results on the cluster set 𝐶({𝑆_{𝑛}/𝑎_{𝑛}}) and the LIL, Ann. Probab. 11 (1983), no. 1, 102–122. MR 682803
  • [2] Patrice Assouad, Martingales et réarrangements, dans les espaces uniformément lisses, C. R. Acad. Sci. Paris Sér. A 279 (1974), 741–744. MR 0402911
  • [3] Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
  • [4] Per Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), 1972, pp. 281–288 (1973). MR 0336297, https://doi.org/10.1007/BF02762802
  • [5] Evarist Giné and Joel Zinn, Some limit theorems for empirical processes, Ann. Probab. 12 (1984), no. 4, 929–998. With discussion. MR 757767
  • [6] V. Goodman, J. Kuelbs, and J. Zinn, Some results on the LIL in Banach space with applications to weighted empirical processes, Ann. Probab. 9 (1981), no. 5, 713–752. MR 628870
  • [7] B. Heinkel, Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach, Z. Wahrsch. Verw. Gebiete 49 (1979), no. 2, 211–220 (French). MR 543994, https://doi.org/10.1007/BF00534258
  • [8] Bernard Heinkel, Une extension de la loi des grands nombres de Prohorov, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 3, 349–362 (French, with English summary). MR 762086, https://doi.org/10.1007/BF00535009
  • [9] Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 0356155, https://doi.org/10.4064/sm-52-2-159-186
  • [10] -, On the modulus of smoothness and the $ {G_\alpha }$-conditions in $ B$-spaces, Aarhus Preprint Series 1974-75, no. 2.
  • [11] Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Princeton Univ. Press, Princeton, N.J., 1972, pp. 159–175. Ann. of Math. Studies, No. 69. MR 0454600
  • [12] -, Non-reflexive spaces of type $ 2$, Israel J. Math. 30 (1978), 1-13.
  • [13] Michael Klass and James Kuelbs, The law of the iterated logarithm in the 𝑙^{𝑝} spaces, Probability in Banach spaces, V (Medford, Mass., 1984) Lecture Notes in Math., vol. 1153, Springer, Berlin, 1985, pp. 310–322. MR 821988, https://doi.org/10.1007/BFb0074957
  • [14] G. Köthe, Topological vector spaces, Springer, Berlin, 1969.
  • [15] J. Kuelbs, An inequality for the distribution of a sum of certain Banach space valued random variables, Studia Math. 52 (1974), 69–87. MR 0383478, https://doi.org/10.4064/sm-52-1-69-87
  • [16] J. Kuelbs, A strong convergence theorem for Banach space valued random variables, Ann. Probability 4 (1976), no. 5, 744–771. MR 0420771
  • [17] J. Kuelbs, Kolmogorov’s law of the iterated logarithm for Banach space valued random variables, Illinois J. Math. 21 (1977), no. 4, 784–800. MR 0455061
  • [18] Michel Ledoux, Sur les théorèmes limites dans certains espaces de Banach lisses, Probability in Banach spaces, IV (Oberwolfach, 1982) Lecture Notes in Math., vol. 990, Springer, Berlin, 1983, pp. 150–169 (French). MR 707515, https://doi.org/10.1007/BFb0064269
  • [19] Michel Ledoux, La loi du logarithme itéré dans les espaces de Banach uniformément convexes, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 17, 613–616 (French, with English summary). MR 791100
  • [20] M. Ledoux and M. Talagrand, Conditions d'intégrabilité pour les multiplicateurs dans le $ TLC$ banachique, Ann. Probab. (to appear).
  • [21] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
  • [22] Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 0443015, https://doi.org/10.4064/sm-58-1-45-90
  • [23] Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326–350. MR 0394135, https://doi.org/10.1007/BF02760337
  • [24] -, Un exemple concernant la super-réflexivité, Séminaire Maurey-Schwartz 1974-75, annexe 2, Ecole Polytechnique, Paris, 1975.
  • [25] -, Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach, Séminaire Maurey-Schwartz 1975-76, exposés III et IV, Ecole Polytechnique, Paris, 1976.
  • [26] Gilles Pisier and Joel Zinn, On the limit theorems for random variables with values in the spaces 𝐿_{𝑝}(2≤𝑝<∞), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), no. 4, 289–304. MR 0471010, https://doi.org/10.1007/BF00533600
  • [27] William F. Stout, Almost sure convergence, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Probability and Mathematical Statistics, Vol. 24. MR 0455094
  • [28] V. V. Yurinskii, Exponential bounds for large deviations, Theory Probab. Appl. 19 (1974), 154-155.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60B12, 60B11

Retrieve articles in all journals with MSC: 60B12, 60B11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0819953-X
Keywords: Law of the iterated logarithm, uniformly convex Banach spaces, smooth norm
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society