Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Spectral theory of the linearized Vlasov-Poisson equation

Author: Pierre Degond
Journal: Trans. Amer. Math. Soc. 294 (1986), 435-453
MSC: Primary 35P05; Secondary 35Q20, 76X05, 82A45
MathSciNet review: 825714
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the spectral theory of the linearized Vlasov-Poisson equation, in order to prove that its solution behaves, for large times, like a sum of plane waves. To obtain such an expansion involving damped waves, we must find an analytical extension of the resolvent of the equation. Then, the poles of this extension are no longer eigenvalues and must be interpreted as eigenmodes, associated to ``generalized eigenfunctions'' which actually are linear functionals on a Banach space of analytic functions.

References [Enhancements On Off] (What's this?)

  • [1] N. A. Krall and A. W. Trivelpiece, Principles of plasma physics, McGraw-Hill, New York, 1973.
  • [2] Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440 (36 #530)
  • [3] P. Degond, Existence et comportement asymptotique des solutions de l'équation de Vlasov-Poisson linéarisée, Thèse de 3ème cycle, Univ. P. & M. Curie, 1983.
  • [4] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373 (19,664d)
  • [5] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473 (34 #3324)
  • [6] N. I. Muskhelishvilli, Singular integral equations, Noordhoff, Groningen, 1977.
  • [7] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ., 1937.
  • [8] N. G. van Kampen, On the theory of stationary waves in plasmas, Physica 21 (1955), 949–963. MR 0075080 (17,690a)
  • [9] K. M. Case, Plasma oscillations, Ann. Physics 7 (1959), 349–364. MR 0106007 (21 #4741)
  • [10] M. Trocheris, Sur les modes normaux des oscillations de plasma, Fusion Nucléaire 5 (1965).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35P05, 35Q20, 76X05, 82A45

Retrieve articles in all journals with MSC: 35P05, 35Q20, 76X05, 82A45

Additional Information

PII: S 0002-9947(1986)0825714-8
Article copyright: © Copyright 1986 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia