Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Martingale transforms and complex uniform convexity


Authors: J. Bourgain and W. J. Davis
Journal: Trans. Amer. Math. Soc. 294 (1986), 501-515
MSC: Primary 46E40; Secondary 42B20, 46B99, 60G46
MathSciNet review: 825718
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Martingale transforms and Calderon-Zygmund singular integral operators are bounded as operators from $ {L_2}({L_1})$ to $ {L_2}({L_q})$ when $ 0 < q < 1$. If $ Y$ is a reflexive subspace of $ {L_1}$ then $ {L_1}/Y$ can be renormed to be $ 2$-complex uniformly convex. A new proof of the cotype 2 property of $ {L_1}/{H_1}$ is given.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E40, 42B20, 46B99, 60G46

Retrieve articles in all journals with MSC: 46E40, 42B20, 46B99, 60G46


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0825718-5
PII: S 0002-9947(1986)0825718-5
Keywords: Martingale transforms, UMD spaces, complex uniform convexity
Article copyright: © Copyright 1986 American Mathematical Society