Contributions from conjugacy classes of regular elliptic elements in Hermitian modular groups to the dimension formula of Hermitian modular cusp forms

Author:
Min King Eie

Journal:
Trans. Amer. Math. Soc. **294** (1986), 635-645

MSC:
Primary 11F46; Secondary 11F55, 11F72, 32N15

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825727-6

MathSciNet review:
825727

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension of the vector space of hermitian modular cusp forms on the hermitian upper half plane can be obtained from the Selberg trace formula; in this paper we shall compute the contributions from conjugacy classes of regular elliptic elements in hermitian modular groups by constructing an orthonomal basis in a certain Hilbert space of holomorphic functions. A generalization of the main Theorem can be applied to the dimension formula of cusp forms of . A similar theorem was given for the case of regular elliptic elements of in [**5**] via a different method.

**[1]**Hel Braun,*Hermitian modular functions*, Ann. of Math. (2)**50**(1949), 827–855. MR**0032699**, https://doi.org/10.2307/1969581**[2]**Hel Braun,*Hermitian modular functions. III*, Ann. of Math. (2)**53**(1951), 143–160. MR**0039005**, https://doi.org/10.2307/1969345**[3]**Minking Eie,*Dimension formulas for the vector spaces of Siegel's modular cusp forms of degree two and degree three*, Thesis, University of Chicago, 1982, pp. 1-246.**[4]**Min King Eie,*Dimensions of spaces of Siegel cusp forms of degree two and three*, Mem. Amer. Math. Soc.**50**(1984), no. 304, vi+184. MR**749684**, https://doi.org/10.1090/memo/0304**[5]**Min King Eie,*Contributions from conjugacy classes of regular elliptic elements in 𝑆𝑝(𝑛,𝑍) to the dimension formula*, Trans. Amer. Math. Soc.**285**(1984), no. 1, 403–410. MR**748846**, https://doi.org/10.1090/S0002-9947-1984-0748846-X**[6]**R. Godement,*Généralités sur les formes modulaires*. I, II, Séminaire Henri Cartan, 10e années, 1957, 1958.**[7]**L. K. Hua,*On the theory of functions of several complex variables*. I, II, III, Amer. Math. Soc. Transl.**32**(1962), 163-263.**[8]**-,*Inequalities involving determinants*, Amer. Math. Soc. Transl.**32**(1962), 265-272.**[9]**Suehiro Kato,*A dimension formula for a certain space of automorphic forms of 𝑆𝑈(𝑝,1)*, Math. Ann.**266**(1984), no. 4, 457–477. MR**735528**, https://doi.org/10.1007/BF01458540**[10]**Hans Maass,*Siegel’s modular forms and Dirichlet series*, Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin-New York, 1971. Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday. MR**0344198****[11]**SigurÄ‘ur Helgason,*Differential geometry and symmetric spaces*, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR**0145455****[12]**George W. Machkey,*Unitary group representation in physics, probability and number theory*, Benjamin, New York, 1978.**[13]**A. Selberg,*Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series*, J. Indian Math. Soc. (N.S.)**20**(1956), 47–87. MR**0088511****[14]**Hideo Shimizu,*On discontinuous groups operating on the product of the upper half planes*, Ann. of Math. (2)**77**(1963), 33–71. MR**0145106**, https://doi.org/10.2307/1970201**[15]**C. L. Siegel,*Lectures on quadratic forms*, Notes by K. G. Ramanathan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 7, Tata Institute of Fundamental Research, Bombay, 1967. MR**0271028**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11F46,
11F55,
11F72,
32N15

Retrieve articles in all journals with MSC: 11F46, 11F55, 11F72, 32N15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825727-6

Article copyright:
© Copyright 1986
American Mathematical Society