Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Contributions from conjugacy classes of regular elliptic elements in Hermitian modular groups to the dimension formula of Hermitian modular cusp forms


Author: Min King Eie
Journal: Trans. Amer. Math. Soc. 294 (1986), 635-645
MSC: Primary 11F46; Secondary 11F55, 11F72, 32N15
DOI: https://doi.org/10.1090/S0002-9947-1986-0825727-6
MathSciNet review: 825727
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The dimension of the vector space of hermitian modular cusp forms on the hermitian upper half plane can be obtained from the Selberg trace formula; in this paper we shall compute the contributions from conjugacy classes of regular elliptic elements in hermitian modular groups by constructing an orthonomal basis in a certain Hilbert space of holomorphic functions. A generalization of the main Theorem can be applied to the dimension formula of cusp forms of $ SU(p,\,q)$. A similar theorem was given for the case of regular elliptic elements of $ {\text{Sp}}(n,\,{\mathbf{Z}})$ in [5] via a different method.


References [Enhancements On Off] (What's this?)

  • [1] Hel Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827-855. MR 0032699 (11:333a)
  • [2] -, Hermitian modular functions. III. The Hermitian modular group, Ann. of Math. (2) 53 (1951), 143-180. MR 0039005 (12:482c)
  • [3] Minking Eie, Dimension formulas for the vector spaces of Siegel's modular cusp forms of degree two and degree three, Thesis, University of Chicago, 1982, pp. 1-246.
  • [4] -, Dimensions of spaces of Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc. No. 304 (1984), pp. 1-185. MR 749684 (86c:11036)
  • [5] -, Contributions from conjugacy classes of regular elliptic elements in $ {\text{Sp}}(n,\,{\mathbf{Z}})$ to the dimension formula, Trans. Amer. Math. Soc. 285 (1984), 403-410. MR 748846 (86c:11037)
  • [6] R. Godement, Généralités sur les formes modulaires. I, II, Séminaire Henri Cartan, 10e années, 1957, 1958.
  • [7] L. K. Hua, On the theory of functions of several complex variables. I, II, III, Amer. Math. Soc. Transl. 32 (1962), 163-263.
  • [8] -, Inequalities involving determinants, Amer. Math. Soc. Transl. 32 (1962), 265-272.
  • [9] Suehiro Kato, A dimension formula for a certain space of automorphic forms of $ SU(p,\,q)$, Math. Ann. 266 (1984), 457-477. MR 735528 (86h:11045)
  • [10] Hans Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin and New York, 1971. MR 0344198 (49:8938)
  • [11] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 0145455 (26:2986)
  • [12] George W. Machkey, Unitary group representation in physics, probability and number theory, Benjamin, New York, 1978.
  • [13] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [14] Hideo Shimizu, On discontinuous groups operating on the product of the upper half plane, Math. Ann. 177 (1963), 33-71. MR 0145106 (26:2641)
  • [15] C. L. Siegel, Lectures on quadratic forms, Tata Institute of Fundamental Research, Bombay, 1967. MR 0271028 (42:5911)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F46, 11F55, 11F72, 32N15

Retrieve articles in all journals with MSC: 11F46, 11F55, 11F72, 32N15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0825727-6
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society