Functional equations for character series associated with matrices

Author:
Edward Formanek

Journal:
Trans. Amer. Math. Soc. **294** (1986), 647-663

MSC:
Primary 15A72; Secondary 16A38

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825728-8

MathSciNet review:
825728

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be either the ring of invariants or the trace ring of generic matrices. Then has a character series which is a symmetric rational function of commuting variables . The main result is that if , then satisfies the functional equation

**[1]**E. Formanek,*Invariants and the ring of generic matrices*, J. Algebra**89**(1984), 178-223. MR**748233 (85g:15031)****[2]**M. Hochster and J. L. Roberts,*Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay*, Adv. in Math.**13**(1974), 115-175. MR**0347810 (50:311)****[3]**G. James and A. Kerber,*The representation theory of the symmetric group*, Addison-Wesley, Reading, Mass. 1981. MR**644144 (83k:20003)****[4]**L. Le Bruyn,*The functional equation for Poincaré series of trace rings of generic**matrices*, Israel J. Math. (to appear). MR**829364 (87e:16041)****[5]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, Oxford Univ. Press (Clarendon), Oxford, 1979. MR**553598 (84g:05003)****[6]**M. P. Murthy,*A note on factorial rings*, Arch. Math.**15**(1964), 418-420. MR**0173695 (30:3905)****[7]**C. Procesi,*The invariant theory of**matrices*, Adv. in Math.**19**(1976), 306-381. MR**0419491 (54:7512)****[8]**L. H. Rowen,*Polynomial identities in ring theory*, Academic Press, New York, 1980. MR**576061 (82a:16021)****[9]**T. A. Springer,*Invariant theory*, Lecture Notes in Math., vol. 585, Springer-Verlag, Berlin and New York, 1977. MR**0447428 (56:5740)****[10]**R. P. Stanley,*Hilbert functions of graded algebras*, Adv. in Math.**28**(1978), 57-83. MR**0485835 (58:5637)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
15A72,
16A38

Retrieve articles in all journals with MSC: 15A72, 16A38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0825728-8

Article copyright:
© Copyright 1986
American Mathematical Society