Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Lyapunov exponents for a stochastic analogue of the geodesic flow


Authors: A. P. Carverhill and K. D. Elworthy
Journal: Trans. Amer. Math. Soc. 295 (1986), 85-105
MSC: Primary 58G32; Secondary 58F11, 60H10
MathSciNet review: 831190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New invariants for a Riemannian manifold are defined as Lyapunov exponents of a stochastic analogue of the geodesic flow. A lower bound is given reminiscent of corresponding results for the geodesic flow, and an upper bound is given for surfaces of positive curvature. For surfaces of constant negative curvature a direct method via the Doob $ h$-transform is used to determine the full Lyapunov structure relating the stable manifolds to the horocycles.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnol′d and A. Avez, Ergodic problems of classical mechanics, Translated from the French by A. Avez, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0232910
  • [2] Peter H. Baxendale, Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies, Probab. Theory Relat. Fields 73 (1986), no. 1, 51–85. MR 849065, 10.1007/BF01845993
  • [3] Andrew Carverhill, Flows of stochastic dynamical systems: ergodic theory, Stochastics 14 (1985), no. 4, 273–317. MR 805125, 10.1080/17442508508833343
  • [4] Andrew Carverhill, A formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem, Stochastics 14 (1985), no. 3, 209–226. MR 800244, 10.1080/17442508508833339
  • [5] -, A "Markovian" approach to the multiplicative ergodic theorem for nonlinear stochastic dynamical systems, Preprint, Mathematics Institute, Univ. of Warwick, Coventry, England, 1984.
  • [6] A. P. Carverhill and K. D. Elworthy, Flows of stochastic dynamical systems: the functional analytic approach, Z. Wahrsch. Verw. Gebiete 65 (1983), no. 2, 245–267. MR 722131, 10.1007/BF00532482
  • [7] A. P. Carverhill, M. J. Chappell, and K. D. Elworthy, Characteristic exponents for stochastic flows, Stochastic processes—mathematics and physics (Bielefeld, 1984) Lecture Notes in Math., vol. 1158, Springer, Berlin, 1986, pp. 52–80. MR 838558, 10.1007/BFb0080209
  • [8] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258
  • [9] K. D. Elworthy, Stochastic dynamical systems and their flows, Stochastic analysis (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1978) Academic Press, New York-London, 1978, pp. 79–95. MR 517235
  • [10] K. D. Elworthy, Stochastic differential equations on manifolds, London Mathematical Society Lecture Note Series, vol. 70, Cambridge University Press, Cambridge-New York, 1982. MR 675100
  • [11] K. D. Elworthy, Stochastic dynamical systems and their Lyapunov exponents, Dynamical systems and partial differential equations (Caracas, 1984), Univ. Simon Bolivar, Caracas, 1986, pp. 1–18. MR 882009
  • [12] Avner Friedman, Nonattainability of a set by a diffusion process, Trans. Amer. Math. Soc. 197 (1974), 245–271. MR 0346903, 10.1090/S0002-9947-1974-0346903-7
  • [13] -, Stochastic differential equations and applications, 2 volumes, Academic Press, London and New York, 1975.
  • [14] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. MR 637061
  • [15] Yuri Kifer, A multiplicative ergodic theorem for random transformations, J. Analyse Math. 45 (1985), 207–233. MR 833412, 10.1007/BF02792550
  • [16] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
  • [17] -, Foundations of differential geometry, Vol. II, Wiley-Interscience, New York, Chichester, Brisbane and Toronto, 1969.
  • [18] M. P. Malliavin and P. Malliavin, Factorisations et lois limites de la diffusion horizontale au-dessus d'un espace Riemannien symmetrique, Theory du Potential et Analyse Harmonique (J. Farant, ed.), Lecture Notes in Math., vol. 404, Springer-Verlag, 1974.
  • [19] -, Holonomie stochastique au-dessus d'un espace riemannien symetrique, C. R. Acad. Sci. Paris Sér. A 280 (1975), 793-795.
  • [20] Paul Malliavin, Champs de Jacobi stochastiques, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 12, A789–A792 (French, with English summary). MR 0458513
  • [21] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
  • [22] Mark A. Pinsky, Stochastic Riemannian geometry, Probabilistic analysis and related topics, Vol. 1, Academic Press, New York, 1978, pp. 199–236. MR 0501385
  • [23] Jean-Jacques Prat, Étude asymptotique et convergence angulaire du mouvement brownien sur une variété à courbure négative, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), no. 22, Aiii, A1539–A1542 (French, with English summary). MR 0388557
  • [24] M. S. Raghunathan, A proof of Oseledec’s multiplicative ergodic theorem, Israel J. Math. 32 (1979), no. 4, 356–362. MR 571089, 10.1007/BF02760464
  • [25] David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581
  • [26] Dennis Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Differential Geom. 18 (1983), no. 4, 723–732 (1984). MR 730924
  • [27] Toshikazu Sunada, Geodesic flows and geodesic random walks, Geometry of geodesics and related topics (Tokyo, 1982) Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1984, pp. 47–85. MR 758647
  • [28] Kôsaku Yosida, Functional analysis, Second edition. Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag New York Inc., New York, 1968. MR 0239384

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G32, 58F11, 60H10

Retrieve articles in all journals with MSC: 58G32, 58F11, 60H10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0831190-1
Keywords: Lyapunov exponents, geodesic flow, stochastic differential equations, Brownian motion, Riemannian manifolds, hyperbolic space, horocycles
Article copyright: © Copyright 1986 American Mathematical Society