Approximation order from certain spaces of smooth bivariate splines on a three-direction mesh

Author:
Rong Qing Jia

Journal:
Trans. Amer. Math. Soc. **295** (1986), 199-212

MSC:
Primary 41A15; Secondary 41A25, 41A63

DOI:
https://doi.org/10.1090/S0002-9947-1986-0831196-2

MathSciNet review:
831196

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the mesh in the plane obtained from a uniform square mesh by drawing in the north-east diagonal in each square. Let be the space of bivariate piecewise polynomial functions in , of total degree , on the mesh . Let denote the approximation order of . In this paper, an upper bound for is given. In the space , the exact values of are obtained:

**[**C. de Boor and R. DeVore,**BD**]*Approximation by smooth multivariate splines*, Trans. Amer. Math. Soc.**276**(1983), 775-788. MR**688977 (84j:41015)****[**C. de Boor and K. Höllig, -**BH**]*splines from parallelepipeds*, J. Analyse Math.**42**(1982/83), 99-115. MR**729403 (86d:41008)****[**-,**BH**]*Approximation from piecewise*-*cubics*:*A counterexample*, Proc. Amer. Math. Soc.**87**(1983), 649-655. MR**687634 (84j:41014)****[**-,**BH**]*Bivariate box splines and smooth**functions on a three-direction mesh*, J. Comput. Appl. Math.**9**(1983), 13-28. MR**702228 (85f:41004)****[**J. H. Bramble and M. Zlámel,**BZ**]*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809-820. MR**0282540 (43:8250)****[**W. Dahmen and C. A. Micchelli,**DM**]*On the approximation order from certain multivariate spline spaces*, J. Austral. Math. Soc. Ser. B**26**(1984), 233-246. MR**765640 (87j:41032)****[**R. Q. Jia,**J**]*Approximation by smooth bivariate splines on a three direction mesh*, Approximation Theory. IV (Chui, Schumaker and Ward, eds.), Adademic Press, New York, 1983. MR**754389 (85m:41019)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
41A15,
41A25,
41A63

Retrieve articles in all journals with MSC: 41A15, 41A25, 41A63

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0831196-2

Article copyright:
© Copyright 1986
American Mathematical Society