Definable sets in ordered structures. I

Authors:
Anand Pillay and Charles Steinhorn

Journal:
Trans. Amer. Math. Soc. **295** (1986), 565-592

MSC:
Primary 03C45; Secondary 03C40, 03C50, 06F99

MathSciNet review:
833697

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces and begins the study of a well-behaved class of linearly ordered structures, the -minimal structures. The definition of this class and the corresponding class of theories, the strongly -minimal theories, is made in analogy with the notions from stability theory of minimal structures and strongly minimal theories. Theorems 2.1 and 2.3, respectively, provide characterizations of -minimal ordered groups and rings. Several other simple results are collected in . The primary tool in the analysis of -minimal structures is a strong analogue of "forking symmetry," given by Theorem 4.2. This result states that any (parametrically) definable unary function in an -minimal structure is piecewise either constant or an order-preserving or reversing bijection of intervals. The results that follow include the existence and uniqueness of prime models over sets (Theorem 5.1) and a characterization of all -categorical -minimal structures (Theorem 6.1).

**1.**John T. Baldwin,*Fundamentals of stability theory*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1988. MR**918762****[1]**J. T. Baldwin and A. H. Lachlan,*On strongly minimal sets*, J. Symbolic Logic**36**(1971), 79–96. MR**0286642****[2]**Paul Moritz Cohn,*Algebra. Vol. 2*, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR**0530404****[3]**L. van den Dries,*Remarks on Tarski's problem concerning*, manuscript, 1983.**[4]**P. Erdös, L. Gillman, and M. Henriksen,*An isomorphism theorem for real-closed fields*, Ann. of Math. (2)**61**(1955), 542–554. MR**0069161****[5]**S. Feferman and R. L. Vaught,*The first order properties of products of algebraic systems*, Fund. Math.**47**(1959), 57–103. MR**0108455****[6]**F. Gausdorff,*Grundzuge der Mengenlehre*, Leipzig, 1914.**[7]**C. H. Langford,*Some theorems on deducibility*, Ann. of Math. (2)**28**(1926/27), no. 1-4, 16–40. MR**1502760**, 10.2307/1968352**[8]**Angus Macintyre,*On 𝜔₁-categorical theories of fields*, Fund. Math.**71**(1971), no. 1, 1–25. (errata insert). MR**0290954****[9]**Anand Pillay,*An introduction to stability theory*, Oxford Logic Guides, vol. 8, The Clarendon Press, Oxford University Press, New York, 1983. MR**719195****[10]**Anand Pillay and Charles Steinhorn,*Definable sets in ordered structures*, Bull. Amer. Math. Soc. (N.S.)**11**(1984), no. 1, 159–162. MR**741730**, 10.1090/S0273-0979-1984-15249-2**[11]**Klaus-Peter Podewski,*Minimale Ringe*, Math.-Phys. Semesterber.**22**(1975), no. 2, 193–197 (German). MR**0392962****[12]***Handbook of mathematical logic*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Edited by Jon Barwise; With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra; Studies in Logic and the Foundations of Mathematics, Vol. 90. MR**0457132****[13]**Joachim Reineke,*Minimale Gruppen*, Z. Math. Logik Grundlagen Math.**21**(1975), no. 4, 357–359 (German). MR**0379179****[14]**Abraham Robinson,*Complete theories*, North-Holland Publishing Co., Amsterdam, 1956. MR**0075897****[15]**J. C. C. McKinsey and Alfred Tarski,*Some theorems about the sentential calculi of Lewis and Heyting*, J. Symbolic Logic**13**(1948), 1–15. MR**0024396****[16]**Saharon Shelah,*Uniqueness and characterization of prime models over sets for totally transcendental first-order theories*, J. Symbolic Logic**37**(1972), 107–113. MR**0316239****[17]**Gerald E. Sacks,*Saturated model theory*, W. A. Benjamin, Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. MR**0398817**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
03C45,
03C40,
03C50,
06F99

Retrieve articles in all journals with MSC: 03C45, 03C40, 03C50, 06F99

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0833697-X

Article copyright:
© Copyright 1986
American Mathematical Society