Definable sets in ordered structures. I
Authors:
Anand Pillay and Charles Steinhorn
Journal:
Trans. Amer. Math. Soc. 295 (1986), 565592
MSC:
Primary 03C45; Secondary 03C40, 03C50, 06F99
MathSciNet review:
833697
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper introduces and begins the study of a wellbehaved class of linearly ordered structures, the minimal structures. The definition of this class and the corresponding class of theories, the strongly minimal theories, is made in analogy with the notions from stability theory of minimal structures and strongly minimal theories. Theorems 2.1 and 2.3, respectively, provide characterizations of minimal ordered groups and rings. Several other simple results are collected in . The primary tool in the analysis of minimal structures is a strong analogue of "forking symmetry," given by Theorem 4.2. This result states that any (parametrically) definable unary function in an minimal structure is piecewise either constant or an orderpreserving or reversing bijection of intervals. The results that follow include the existence and uniqueness of prime models over sets (Theorem 5.1) and a characterization of all categorical minimal structures (Theorem 6.1).
 1.
John
T. Baldwin, Fundamentals of stability theory, Perspectives in
Mathematical Logic, SpringerVerlag, Berlin, 1988. MR 918762
(89k:03002)
 [1]
J.
T. Baldwin and A.
H. Lachlan, On strongly minimal sets, J. Symbolic Logic
36 (1971), 79–96. MR 0286642
(44 #3851)
 [2]
Paul
Moritz Cohn, Algebra. Vol. 2, John Wiley & Sons,
LondonNew YorkSydney, 1977. With errata to Vol. I. MR 0530404
(58 #26625)
 [3]
L. van den Dries, Remarks on Tarski's problem concerning , manuscript, 1983.
 [4]
P.
Erdös, L.
Gillman, and M.
Henriksen, An isomorphism theorem for realclosed fields, Ann.
of Math. (2) 61 (1955), 542–554. MR 0069161
(16,993e)
 [5]
S.
Feferman and R.
L. Vaught, The first order properties of products of algebraic
systems, Fund. Math. 47 (1959), 57–103. MR 0108455
(21 #7171)
 [6]
F. Gausdorff, Grundzuge der Mengenlehre, Leipzig, 1914.
 [7]
C.
H. Langford, Some theorems on deducibility, Ann. of Math. (2)
28 (1926/27), no. 14, 16–40. MR
1502760, http://dx.doi.org/10.2307/1968352
 [8]
Angus
Macintyre, On 𝜔₁categorical theories of
fields, Fund. Math. 71 (1971), no. 1,
1–25. (errata insert). MR 0290954
(45 #48)
 [9]
Anand
Pillay, An introduction to stability theory, Oxford Logic
Guides, vol. 8, The Clarendon Press Oxford University Press, New York,
1983. MR
719195 (85i:03104)
 [10]
Anand
Pillay and Charles
Steinhorn, Definable sets in ordered
structures, Bull. Amer. Math. Soc. (N.S.)
11 (1984), no. 1,
159–162. MR
741730 (86c:03033), http://dx.doi.org/10.1090/S027309791984152492
 [11]
KlausPeter
Podewski, Minimale Ringe, Math.Phys. Semesterber.
22 (1975), no. 2, 193–197 (German). MR 0392962
(52 #13775)
 [12]
Handbook of mathematical logic, NorthHolland Publishing Co.,
Amsterdam, 1977. Edited by Jon Barwise; With the cooperation of H. J.
Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra; Studies in Logic
and the Foundations of Mathematics, Vol. 90. MR 0457132
(56 #15351)
 [13]
Joachim
Reineke, Minimale Gruppen, Z. Math. Logik Grundlagen Math.
21 (1975), no. 4, 357–359 (German). MR 0379179
(52 #85)
 [14]
Abraham
Robinson, Complete theories, NorthHolland Publishing Co.,
Amsterdam, 1956. MR 0075897
(17,817b)
 [15]
J.
C. C. McKinsey and Alfred
Tarski, Some theorems about the sentential calculi of Lewis and
Heyting, J. Symbolic Logic 13 (1948), 1–15. MR 0024396
(9,486q)
 [16]
Saharon
Shelah, Uniqueness and characterization of prime models over sets
for totally transcendental firstorder theories, J. Symbolic Logic
37 (1972), 107–113. MR 0316239
(47 #4787)
 [17]
Gerald
E. Sacks, Saturated model theory, W. A. Benjamin, Inc.,
Reading, Mass., 1972. Mathematics Lecture Note Series. MR 0398817
(53 #2668)
 1.
 J. Baldwin, Stability theory, Perspectives in Mathematical Logic, SpringerVerlag, Berlin (to appear). MR 918762 (89k:03002)
 [1]
 J. Baldwin and A. Lachlan, On strongly minimal sets, J. Symbolic Logic 36 (1971), 7996. MR 0286642 (44:3851)
 [2]
 P. Cohn, Algebra, Vol. 2, Wiley, London, 1977. MR 0530404 (58:26625)
 [3]
 L. van den Dries, Remarks on Tarski's problem concerning , manuscript, 1983.
 [4]
 P. Erdös, L. Gillman and M. Henriksen, An isomorphism theorem for real closed fields, Ann. of Math. (2) 61 (1955), 542554. MR 0069161 (16:993e)
 [5]
 S. Feferman and R. Vaught, The first order properties of algebraic systems, Fund. Math. 47 (1959), 57103. MR 0108455 (21:7171)
 [6]
 F. Gausdorff, Grundzuge der Mengenlehre, Leipzig, 1914.
 [7]
 C. Langford, Some theorems on deducibility, Ann. of Math. (2) 28 (1927), 1640. MR 1502760
 [8]
 A. Macintyre, On categorical theories of fields, Fund. Math. 71 (1971), 125. MR 0290954 (45:48)
 [9]
 A. Pillay, An introduction to stability theory, Oxford Univ. Press, Oxford, 1983. MR 719195 (85i:03104)
 [10]
 A. Pillay and C. Steinhorn, Definable sets in ordered structures, Bull. Amer. Math. Soc. (N.S.) 11 (1984). MR 741730 (86c:03033)
 [11]
 KP. Podewski, Minimale ringe, preprint 1973. MR 0392962 (52:13775)
 [12]
 M. Rabin, Decidable theories, Handbook of Mathematical Logic (J. Barwise ed.), NorthHolland, Amsterdam, 1977. MR 0457132 (56:15351)
 [13]
 J. Reineke, Minimale gruppen, Z. Math. Logik Grundlag. Math. 21 (1975), 357359. MR 0379179 (52:85)
 [14]
 A. Robinson, Complete theories, NorthHolland, Amsterdam, 1956. MR 0075897 (17:817b)
 [15]
 A. Tarski and J. McKinsey, A decision problem for elementary algebra and geometry, Rand Corporation, Santa Monica, 1948. MR 0024396 (9:486q)
 [16]
 S. Shelah, Uniqueness and characterization of prime models over sets for totally transcendental firstorder theories, J. Symbolic Logic 37 (1972), 107113. MR 0316239 (47:4787)
 [17]
 G. Sacks, Saturated model theory, Benjamin, Reading, Mass., 1972. MR 0398817 (53:2668)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
03C45,
03C40,
03C50,
06F99
Retrieve articles in all journals
with MSC:
03C45,
03C40,
03C50,
06F99
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719860833697X
PII:
S 00029947(1986)0833697X
Article copyright:
© Copyright 1986 American Mathematical Society
