Congruences on regular semigroups

Authors:
Francis Pastijn and Mario Petrich

Journal:
Trans. Amer. Math. Soc. **295** (1986), 607-633

MSC:
Primary 20M10; Secondary 08A30, 20M17

DOI:
https://doi.org/10.1090/S0002-9947-1986-0833699-3

MathSciNet review:
833699

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a regular semigroup and let be a congruence relation on . The kernel of , in notation , is the union of the idempotent -classes. The trace of , in notation , is the restriction of to the set of idempotents of . The pair is said to be the congruence pair associated with . Congruence pairs can be characterized abstractly, and it turns out that a congruence is uniquely determined by its associated congruence pair. The triple is said to be the congruence triple associated with . Congruence triples can be characterized abstractly and again a congruence relation is uniquely determined by its associated triple.

The consideration of the parameters which appear in the above-mentioned representations of congruence relations gives insight into the structure of the congruence lattice of . For congruence relations and , put if and only if . Then and are complete congruences on the congruence lattice of and .

**[1]**G. Birkhoff,*Lattice theory*, Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R. I., 1940. MR**0001959 (1:325f)****[2]**A. H. Clifford, and G. B. Preston,*The algebraic theory of semigroups*, Math. Surveys, no. 7, Amer. Math. Soc., Providence, R. I., Vol. I, 1961, Vol. II, 1967.**[3]**R. Feigenbaum,*Regular semigroup congruences*, Semigroup Forum**17**(1979), 373-377. MR**532428 (80h:20088)****[4]**T. E. Hall,*On the lattice of congruences on a regular semigroup*, Bull. Austral. Math. Soc.**1**(1969), 231-235. MR**0257254 (41:1905)****[5]**J. M. Howie,*An introduction to semigroup theory*, Academic Press, New York, 1976. MR**0466355 (57:6235)****[6]**G. Lallement,*Demi-groupes réguliers*, Ann. Mat. Pura Appl.**77**(1967), 47-129. MR**0225915 (37:1505)****[7]**W. D. Munn,*Decompositions of the congruence lattice of a semigroup*, Proc. Edinburgh Math. Soc.**23**(1980), 193-198. MR**597123 (81m:20082)****[8]**K. S. S. Nambooripad,*Structure of regular semigroups*. I, Mem. Amer. Math. Soc. No. 224 (1979). MR**546362 (81i:20086)****[9]**F. Pastijn and P. Trotter,*Lattices of completely regular semigroup varieties*, Pacific J. Math.**119**(1985), 191-214. MR**797024 (87b:20079)****[10]**M. Petrich,*Inverse semigroups*, Wiley, New York, 1984. MR**752899 (85k:20001)****[11]**N. R. Reilly and H. E. Scheiblich,*Congruences on regular semigroups*, Pacific J. Math.**23**(1967), 349-360. MR**0219646 (36:2725)****[12]**H. E. Scheiblich,*Certain congruence and quotient lattices related to completely*0-*simple and primitive regular semigroups*, Glasgow Math. J.**10**(1969), 21-24. MR**0244425 (39:5740)****[13]**-,*Kernels of inverse semigroups homomorphisms*, J. Austral. Math. Soc.**18**(1974), 289-292. MR**0360887 (50:13334)****[14]**P. G. Trotter,*Normal partitions of idempotents of regular semigroups*, J. Austral. Math. Soc.**A26**(1978), 110-114. MR**510594 (80c:20088)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
20M10,
08A30,
20M17

Retrieve articles in all journals with MSC: 20M10, 08A30, 20M17

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0833699-3

Article copyright:
© Copyright 1986
American Mathematical Society