Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Total stability of sets for nonautonomous differential systems


Author: Zhivko S. Athanassov
Journal: Trans. Amer. Math. Soc. 295 (1986), 649-663
MSC: Primary 34D10; Secondary 34D20, 93D05
DOI: https://doi.org/10.1090/S0002-9947-1986-0833701-9
MathSciNet review: 833701
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The principal purpose of this paper is to present sufficient conditions for total stability, or stability under constantly acting perturbations, of sets of a sufficiently general kind for nonautonomous ordinary differential equations. To do this, two Liapunov-like functions with specific properties are used. The obtained results include and considerably improve the classical results on total stability of isolated equilibrium points. Applications are presented to study the stability of nonautonomous Lurie-type nonlinear equations.


References [Enhancements On Off] (What's this?)

  • [1] A. M. Liapounoff [Liapunov], Problème général de la stabilité du mouvement, Ann. of Math. Studies, no. 17, Princeton Univ. Press, Princeton, N. J., 1949.
  • [2] J. P. LaSalle, The stability of dynamical systems, CBMS Regional Conf. Ser. Appl. Math., no. 25, SIAM, Philadelphia, Pa., 1976. MR 0481301 (58:1426)
  • [3] V. M. Matrosov, On the stability of motion, Prikl. Mat. Mekh. 26 (1962), 885-895. MR 0153934 (27:3895)
  • [4] N. Rouche, P. Habets and M. Laloy, Stability theory by Liapunov's direct method, Appl. Math. Sci. 22, Springer-Verlag, Berlin, 1977. MR 0450715 (56:9008)
  • [5] G. N. Duboshin, The problem of the stability of motion under persistently acting perturbations, Trudy Gos. Astr. Inst. Sternberg 14 (1940), no. 1.
  • [6] Z. S. Athanassov, Perturbation theorems for nonlinear systems of ordinary differential equations, J. Math. Anal. Appl. 86 (1982), 194-207. MR 649865 (83c:34058)
  • [7] -, On the asymptotic behaviour of nonlinear systems of ordinary differential equations, Glasgow Math. J. 26 (1985), 161-170. MR 798744 (86j:34049)
  • [8] -, Existence, uniqueness, and stability theorems for bounded solutions of nonlinear differential systems. Ann. Mat. Pura Appl. (4) 140 (1985), 301-330. MR 807642 (87c:34010)
  • [9] F. Brauer, Some stability and perturbation problems for differential and integral equations, Departamento de Matematica, Universidade de Brasilia, Brasilia, 1974.
  • [10] W. Hahn, Theory and application of Liapunov's direct method, Prentice-Hall, Englewood Cliffs, N.J., 1963. MR 0147716 (26:5230)
  • [11] V. I. Zubov, The methods of Liapunov and their applications, Noordhoff, Groningen, 1964. MR 0179428 (31:3676)
  • [12] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, Berlin, 1970. MR 0289890 (44:7077)
  • [13] A. A. Šestakov, Tests for the instability of a set with respect to a nonautonomous differential system, Differencial'nye Uravnenija 13 (1977), 958-960. MR 0481306 (58:1431)
  • [14] -, Criteria for the stability of sets with respect to a nonautonomous differential system, Differential'nye Uravnenija 13 (1977), 1079-1090. MR 0481307 (58:1432)
  • [15] J. P. LaSalle and G. Szegö, Comments on L. Hwang's paper "New methods for constructing Liapunov functions for time-invariant control systems", Proc. Second Congr. IFAC, Butterworths, London, 1964, p. 582.
  • [16] J. P. LaSalle, Recent advances in Liapunov stability theory, SIAM Rev. 6 (1964), 1--11. MR 0179429 (31:3677)
  • [17] T. Yoshizawa, Eventual properties and quasi-asymptotic stability of a non-compact set, Funkcial. Ekvac. 8 (1966), 79-90. MR 0197893 (33:6053)
  • [18] O. Hájek, Absolute stability of noncompact sets, J. Differential Equations 9 (1971), 496-508. MR 0273154 (42:8035)
  • [19] -, Ordinary and asymptotic stability of noncompact sets, J. Differential Equations 11 (1972), 49-65. MR 0289880 (44:7067)
  • [20] I. G. Malkin, Stability in the case of constantly acting disturbances, Prikl. Mat. Mekh. 8 (1944), 241-245. MR 0014530 (7:298a)
  • [21] S. I. Gorshin, On the stability of motion under constantly acting perturbations, Izv. Akad. Nauk Kazakh. SSR Ser. Mat. Mekh. 2 56 (1948), 46-73.
  • [22] S. Lefschetz, Stability of nonlinear control systems, Academic Press, New York, 1965. MR 0175676 (30:5860)
  • [23] M. A. Aizerman and F. R. Gantmakher, Absolute stability of regulator systems, Holden-Day, San Francisco, Calif., 1964. MR 0183556 (32:1036)
  • [24] I. G. Malkin, On the reversibility of Liapunov's theorem on asymptotic stability, Prikl. Mat. Mekh. 18 (1954), 129-138. MR 0061734 (15:873e)
  • [25] J. L. Massera, Contributions to stability theory, Ann. of Math. (2) 64 (1956), 182-206. MR 0079179 (18:42d)
  • [26] I. G. Malkin, On the construction of Liapunov functions for systems of linear equations, Prikl. Mat. Mekh. 16 (1952), 239-242. MR 0047864 (13:944c)
  • [27] F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of differential equations, J. Math. Anal. Appl. (to appear). MR 826653 (87e:34088)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34D10, 34D20, 93D05

Retrieve articles in all journals with MSC: 34D10, 34D20, 93D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0833701-9
Keywords: Total stability of sets, nonautonomous differential systems, Liapunovlike functions, Lurie-type equations, uniform asymptotic stability, absolute stability
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society