Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ L\sp p$ inequalities for stopping times of diffusions

Author: R. Dante DeBlassie
Journal: Trans. Amer. Math. Soc. 295 (1986), 765-782
MSC: Primary 60G40; Secondary 60H10, 60J60
MathSciNet review: 833708
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {X_t}$ be a solution to a stochastic differential equation. Easily verified conditions on the coefficients of the equation give $ {L^p}$ inequalities for stopping times of $ {X_t}$ and the maximal function. An application to Brownian motion with radial drift is also discussed.

References [Enhancements On Off] (What's this?)

  • [1] D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math. 26 (1977), no. 2, 182–205. MR 0474525
  • [2] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249–304. MR 0440695
  • [3] Avner Friedman, Stochastic differential equations and applications. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Probability and Mathematical Statistics, Vol. 28. MR 0494490
  • [4] Carl Mueller, Exit times of diffusions, Martingale theory in harmonic analysis and Banach spaces (Cleveland, Ohio, 1981) Lecture Notes in Math., vol. 939, Springer, Berlin-New York, 1982, pp. 98–105. MR 668540
  • [5] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G40, 60H10, 60J60

Retrieve articles in all journals with MSC: 60G40, 60H10, 60J60

Additional Information

Keywords: Stopping times, diffusions, maximal function
Article copyright: © Copyright 1986 American Mathematical Society