Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The spectrum $ (P\wedge{\rm BP}\langle 2\rangle)\sb {-\infty}$


Authors: Donald M. Davis, David C. Johnson, John Klippenstein, Mark Mahowald and Steven Wegmann
Journal: Trans. Amer. Math. Soc. 296 (1986), 95-110
MSC: Primary 55P42; Secondary 55N22, 55T15
DOI: https://doi.org/10.1090/S0002-9947-1986-0837800-7
MathSciNet review: 837800
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The spectrum $ {(P \wedge {\text{BP}}\langle {\text{2}}\rangle)_{ - \infty }}$ is defined to be the homotopy inverse limit of spectra $ {P_{ - k}} \wedge {\text{BP}}\langle {\text{2}}\rangle $, where $ {P_{ - k}}$ is closely related to stunted real projective spaces, and $ {\text{BP}}\langle {\text{2}}\rangle $ is formed from the Brown-Peterson spectrum. It is proved that this spectrum is equivalent to the infinite product of odd suspensions of the $ 2$-adic completion of the spectrum of connective $ K$-theory. An odd-primary analogue is also proved.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Stable homotopy and generalized homology, Univ. of Chicago Press, Chicago, Ill., 1974. MR 0402720 (53:6534)
  • [2] J. F. Adams and S. B. Priddy, Uniqueness of BSO, Math. Proc. Cambridge Philos. Soc. 80 (1976), 475-509. MR 0431152 (55:4154)
  • [3] J. F. Adams and G. Walker, Complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81-103. MR 0171285 (30:1516)
  • [4] N. A. Baas, On bordism theory of manifolds with singularities, Math. Scand. 33 (1973), 279-302. MR 0346824 (49:11547b)
  • [5] A. K. Bousfield, Localization of spectra with respect to homology, Topology 18 (1979), 257-281. MR 551009 (80m:55006)
  • [6] E. H. Brown and F. P. Peterson, A spectrum whose $ {\mathbf{Z}}/p$-cohomology is the algebra of reduced $ pth$-powers, Topology 5 (1966), 149-157. MR 0192494 (33:719)
  • [7] D. M. Davis, Odd-primary bo-resolutions and $ K$-theory localization, Illinois J. Math. (to appear). MR 822385 (87g:55026)
  • [8] D. M. Davis and M. Mahowald, The spectrum $ {(P \wedge bo)_{ - \infty }}$, Math. Proc. Cambridge Philos. Soc. 96 (1984), 85-94. MR 743704 (85j:55018)
  • [9] D. C. Johnson and W. S. Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353. MR 0334257 (48:12576)
  • [10] T. Kambe, H. Matsunaga and H. Toda, A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149. MR 0190929 (32:8339)
  • [11] R. M. Kane, Operations in connective $ K$-theory, Mem. Amer. Math. Soc. 254 (1981). MR 634210 (82m:55025)
  • [12] W. H. Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), 449-458. MR 556925 (81e:55020)
  • [13] M. Mahowald, bo-resolutions, Pacific J. Math. 92 (1981), 365-383. MR 618072 (82m:55017)
  • [14] R. J. Milgram, The Steenrod algebra and its dual for connective $ K$-theory, Northwestern Homotopy Theory Conf., Notas de Matematicas $ {\text{y}}$ Simposia, Mex. Math. Soc. 1 (1974), 127-158. MR 761725
  • [15] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285-298. MR 710102 (85f:55005)
  • [16] D. C. Ravenel, Localization with respect to certain homology theories, Amer. J. Math. 106 (1984), 351-414. MR 737778 (85k:55009)
  • [17] C. A. Robinson, A Kunneth theorem for connective $ K$-theory, J. London Math. Soc. 17 (1978), 173-181. MR 0478134 (57:17623)
  • [18] S. Wegmann, Inverse systems of spectra and generalizations of a theorem of W. H. Lin, Thesis, Univ. of Warwick, 1983.
  • [19] W. S. Wilson, A $ BP$-introduction and sampler, CBMS Regional Conf. Series in Math., vol. 48, Amer. Math. Soc., Providence, R. I., 1982. MR 655040 (83j:55005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P42, 55N22, 55T15

Retrieve articles in all journals with MSC: 55P42, 55N22, 55T15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0837800-7
Keywords: Brown-Peterson spectrum, homotopy inverse limits, projective spaces, Adams spectral sequence
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society