Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A parametrix for step-two hypoelliptic diffusion equations


Author: Thomas Taylor
Journal: Trans. Amer. Math. Soc. 296 (1986), 191-215
MSC: Primary 35H05; Secondary 35K55
DOI: https://doi.org/10.1090/S0002-9947-1986-0837807-X
MathSciNet review: 837807
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper I construct a parametrix for the hypoelliptic diffusion equations $ (\partial /\partial t - L)u = 0$, where $ L = \sum\nolimits_{a = 1}^n {g_a^2} $ and where the $ {g_a}$ are vector fields which satisfy the property that they, together with all of the commutators $ [{g_{a,}}{g_b}]$ for $ a < b$, are at each point linearly independent and span the tangent space.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, R. Bott and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279. MR 0650828 (58:31287)
  • [2] R. Beals, P. Grenier and N. Stanton, The heat equation and geometry of $ CR$ manifolds, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 275. MR 733694 (85b:32030)
  • [3] R. W. Brockett, Control theory and singular Riemannian geometry, New Directions in Applied Mathematics (P. J. Hilton and G. S. Young, eds.), Springer-Verlag, 1981, p. 11. MR 661282 (83j:49036)
  • [4] R. Feynman, Statistical mechanics, Benjamin, Reading, Mass., 1972.
  • [5] G. E. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, N.J., 1982. MR 657581 (84h:43027)
  • [6] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95. MR 0461589 (57:1574)
  • [7] P. Gilkey, Curvature and eigenvalues of the Laplacian for elliptic complexes, Adv. in Math.
  • [8] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York, 1980.
  • [9] K. Helmes and A. Schwane, Levy's stochastic area formula in higher dimensions, Lecture Notes in Control and Information Sciences (W. H. Fleming and L. G. Gorostiza, eds.), vol. 42, Springer-Verlag, 1982. MR 794513 (86f:28019)
  • [10] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 148. MR 0222474 (36:5526)
  • [11] P. E. Jorgensen, Representation of differential operators on a Lie group, J. Funct. Anal. 20 (1975), 105.
  • [12] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966. MR 0203473 (34:3324)
  • [13] H. P. McKean and I. M. Singer, Curvature and eigenvalues of the Laplacian, J. Differential Geom. 1 (1969), 42. MR 0217739 (36:828)
  • [14] S. Minakshisundaram, A generalization of Epstein zeta functions, Canad. J. Math. 1 (1949), 320. MR 0032861 (11:357c)
  • [15] -, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc. 17 (1953), 158. MR 0061750 (15:877d)
  • [16] S. Minakshisundaram and A. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242. MR 0031145 (11:108b)
  • [17] V. K. Patodi, Curvature and the eigenforms of the Laplace operator, J. Differential Geom. 5 (1971), 233. MR 0292114 (45:1201)
  • [18] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247. MR 0436223 (55:9171)
  • [19] N. Stanton and D. Tartakoff, The heat equation for the $ \overline {{\partial _b}} $-Laplacian, Comm. Partial Differential Equations 9 (1984), 597. MR 745020 (85f:58114)
  • [20] M. Taylor, Noncommutative microlocal analysis, Mem. Amer. Math. Soc. 52, No. 313 (1984). MR 764508 (86f:58156)
  • [21] T. J. Taylor, Hypoelliptic diffusions and nonlinear control theory, Harvard Ph.D. Thesis, 1983.
  • [22] K. Yosida, Functional analysis, 4th ed., Springer-Verlag, 1974. MR 0350358 (50:2851)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35H05, 35K55

Retrieve articles in all journals with MSC: 35H05, 35K55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0837807-X
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society