Automorphic images of commutative subspace lattices

Authors:
K. J. Harrison and W. E. Longstaff

Journal:
Trans. Amer. Math. Soc. **296** (1986), 217-228

MSC:
Primary 46C10; Secondary 06B99, 47A15, 47D25

MathSciNet review:
837808

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the lattice of all (closed) subspaces of a complex, separable Hilbert space . Let be the following condition that a subspace lattice may or may not satisfy: (AC)

**[1]**William Arveson,*Operator algebras and invariant subspaces*, Ann. of Math. (2)**100**(1974), 433–532. MR**0365167****[2]**William G. Bade,*Weak and strong limits of spectral operators*, Pacific J. Math.**4**(1954), 393–413. MR**0063567****[3]**William G. Bade,*On Boolean algebras of projections and algebras of operators*, Trans. Amer. Math. Soc.**80**(1955), 345–360. MR**0073954**, 10.1090/S0002-9947-1955-0073954-0**[4]**Reinhold Baer,*Linear algebra and projective geometry*, Academic Press Inc., New York, N. Y., 1952. MR**0052795****[5]**John B. Conway,*A complete Boolean algebra of subspaces which is not reflexive*, Bull. Amer. Math. Soc.**79**(1973), 720–722. MR**0320778**, 10.1090/S0002-9904-1973-13279-3**[6]**Kenneth R. Davidson,*Commutative subspace lattices*, Indiana Univ. Math. J.**27**(1978), no. 3, 479–490. MR**0482264****[7]**Thomas Donnellan,*Lattice theory*, Pergamon Press, Oxford-New York-Toronto, Ont., 1968. MR**0233738****[8]**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part III*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral operators; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1971 original; A Wiley-Interscience Publication. MR**1009164****[9]**P. A. Fillmore and W. E. Longstaff,*On isomorphisms of lattices of closed subspaces*, Canad. J. Math.**36**(1984), no. 5, 820–829. MR**762744**, 10.4153/CJM-1984-048-x**[10]**P. R. Halmos,*Reflexive lattices of subspaces*, J. London Math. Soc. (2)**4**(1971), 257–263. MR**0288612****[11]**Alan Hopenwasser,*The equation 𝑇𝑥=𝑦 in a reflexive operator algebra*, Indiana Univ. Math. J.**29**(1980), no. 1, 121–126. MR**554821**, 10.1512/iumj.1980.29.29009

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46C10,
06B99,
47A15,
47D25

Retrieve articles in all journals with MSC: 46C10, 06B99, 47A15, 47D25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0837808-1

Article copyright:
© Copyright 1986
American Mathematical Society